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Prólogo
El curso de Matemáticas VII, tal y como se imparte en la Universidad Simón Boĺıvar,

es un curso que requiere de una preparación mental previa adicional, en comparación a
los cursos anteriores. Después de Matemáticas II, IV, V y VI, está bien fundada en el
estudiante la concepción clásica del cálculo diferencial. Estos, al verse sucesivamente,
dan la impresión de complementarse el uno al otro, como ŕıos distintos que eventual-
mente juntan su cauce. Y aunque esta perspectiva es de alguna forma cierta, puede
fácilmente resultarle engañosa el nuevo estudiante de Matemáticas VII: su paradigma
y los nuevos objetos matemáticos en ella definidos precisan de una visión un tanto más
abierta, aunque no necesariamente más abstracta que la de Matemáticas III. Pero aho-
ra la idea principal no es complementar, sino construir, con las herramientas a mano,
un nuevo puñado de conceptos matemáticos que incrementen sustancialmente nuestro
poder de cálculo.

En esencia, Matemáticas VII es un curso sobre integración, y sus piedras angulares
son la Delta de Dirac, ahora como un objeto de carácter algebraico, la derivada ge-
neralizada, y las autofunciones. En este sentido, si se dedica el tiempo necesario a
comprender estos conceptos, el grueso de Matemáticas VII se torna algo bastante sen-
cillo, y en ocasiones hasta natural. Debo hacer un énfasis nuevamente en la importancia
de entenderlos, por miedo a no ser lo suficientemente claro: a lo largo de Matemáti-
cas VII, estos conceptos deberán convertirse en segunda naturaleza para el lector; algo
tan elemental como la pendiente de una recta, el teorema de Pitágoras, o un producto
notable. Logrado esto, más allá de gozar de una buena posibilidad de obtener la nota
máxima, se habrán consolidado las ideas fundamentales del curso, y con ellas, el gran
poder de cálculo que estas envisten.

La presente gúıa apunta a servir como recurso para justamente eso: la consolidación
de ideas fundamentales, aśı como un paseo de la mano por los detalles importantes de
la teoŕıa, ejercicios de variada dificultad y problemas reales en los cuales Matemáticas
VII reluce por su elegancia y sencillez al momento de resolver. Aunque ciertamente no
pretende ser una inmensa colección de problemas propuestos, se han incluido en la gúıa
suficientes problemas, muchos originales y algunos de fuentes diversas, como para hacer
de su resolución un objetivo tanto factible dentro del tiempo de estudio disponible en
el trimestre como gratificante en el ámbito académico.

Finalmente, debo un agradecimiento a Manuel Morgado y al profesor Mario Caicedo,
por sus interesantes conversaciones sobre el tema, y a mis compañeros de GECOUSB
por inspirarme a llevar a cabo la ardua labor de recopilar, organizar y resolver el con-
tenido de la presente gúıa. Espero le sirva este humilde trabajo.

En memoria de Stephen Andrea.

Samuel Alonso
Maracay, abril de 2018
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Cómo Usar la Gúıa
A lo largo de la gúıa, los problemas propuestos se encuentran organizados de dos

maneras: por tema y dificultad. Cada enunciado es precedido por una etiqueta y el
número de problema correspondiente a su tema. Las etiquetas dan una idea de la
complejidad del problema:

T de trivial; un ejercicio sólo para entrar en calor.

S de simple; algo sencillo pero que requiere de más trabajo.

D de dif́ıcil; un reto al lector, aunque no necesariamente algo pertinente a un
parcial.

E de especial; una aplicación interesante del contenido o un esfuerzo adicional por
entender la teoŕıa.

Los ejercicios de la gúıa han sido seleccionados de forma tal que le ahorren cálculos
redundantes. Si en algún punto siente que el cálculo se vuelve extremadamente labo-
rioso, seguramente ya habrá resuelto algo muy similar en ejercicios anteriores; la lista
ha sido diseñada particularmente para que esto sea posible. En este sentido, es muy
recomendable que no se salte ejercicios y que no esquive las demostraciones, de haber-
las, sino que haga de la resolución de esta gúıa un proceso secuencial. De igual manera,
encontrará la solución a cada ejercicio en la sección final. Asimismo, le invito a no evi-
tar los ejercicios especiales, pues estarán completamente dentro de su alcance de haber
resuelto los ejercicios anteriores. Como nota adicional, siéntase en la libertad de citar
cualquier fórmula o teorema que requiera para la solución de los problemas, siempre y
cuando no vaya en contra del propósito del ejercicio.

Como convenciones en la notación, a menos que se indique lo contrario, D denotará
derivación siempre y cuando no sea ambiguo respecto a otras variables o parámetros;
para los casos en que sea ambiguo, el sub́ındice indicará la variable con respecto a la
cual sucede la derivación. α, β, γ y λ usualmente denotarán parámetros, mientras que
u, v, µ, x, z, s usualmente denotarán variables. Un recordatorio útil es que f(x) de-
nota el valor de alguna función f evaluada en x, mientras que f hace referencia a la
función en śı como objeto matemático. Al definir operadores diferenciales, el śımbolo 1
se entenderá como el elemento identidad del espacio pertinente. Si f es alguna función,
L (f) denotará su transformada de Laplace.

Finalmente, cualquier información sobre errores de redacción o en la solución de al-
guno de los problemas será bien recibida y puede enviarla al correo del autor o al de
GECOUSB 1. Si es profesor u ostenta algún cargo académico relacionado con la materia
y desea participar en los esfuerzos de revisión, puede escribir a las direcciones anteriores.

114-10028@usb.ve, gecousb@gmail.com

2



Para Isabel, como śımbolo de gratitud
por su inagotable paciencia,

César, por su incondicional apoyo,

y Gabriel, por su alegŕıa y perseverancia;

a ustedes dedico este trabajo.
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Lista de Problemas
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Derivada Generalizada

T.1
Evalúe, empleando la derivada generalizada, la integral∫ ∞

−∞
f(x) cos(λx) dx, λ ∈ R, (1)

donde

f(x) =


−x+ 1, 0 ≤ x < 1;
x− 1, 1 ≤ x < 2;
0, d.o.m.

(2)

T.2
De forma similar, evalúe la integral∫ ∞

−∞
f(x) sin(ωx) dx, ω ∈ R, (3)

donde

f(x) =


2x+ 2, −1 ≤ x < −1/2;
1, 1/2 ≤ x < 1;
0, d.o.m.

(4)

T.3
Halle el valor de la integral ∫ ∞

−∞
f(x) cos(λx) dx (5)

como función de λ ∈ R, donde

f(x) =


2x+ 2, −1 ≤ x < 0;
x− 1, 0 ≤ x < 1;
0, d.o.m.

(6)

S.1
Calcule el valor de ∫ ∞

−∞
f(x) cos(kx− λt) dx, k > 0 (7)
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como función de λ ∈ R, donde

f(x) =
{
x, 0 ≤ x < 2π/k;
0, d.o.m. (8)

S.2.A
Muestre que x2δ′(x) = 0 en el sentido de distribuciones.

S.2.B
Análogamente, muestre que x3δ′′(x) = 0.

S.2.C
Finalmente, muestre que xkδ(n)(x) = 0 si k > n. Considere el caso k = n y exprese la
distribución resultante en términos de δ.

S.3.A
Considere a H(kx), donde H es la función de Heaviside. Empleando la definición de la
derivada generalizada, muestre que

δ(kx) = 1
|k|
δ(x). (9)

(Sugerencia: analice los casos k > 0 y k < 0 por separado). Muestre además que ambas
funciones generalizadas son iguales en el sentido de distribuciones.

S.3.B
De forma similar, muestre que

δ′(kx) = ± 1
k2 δ

′(x), según k ≷ 0. (10)

S.4.A
Considere la distribución δ(x), y definamos γ(x) = δ(−x). Muestre que

γ(x) = δ(x) (11)

en el sentido de distribuciones. ¿Se sigue entonces que δ(x) = δ(−x)?

6



S.4.B
Ahora, definamos β(x) = δ′(−x). De forma análoga, muestre que

β(x) = −δ′(x). (12)

¿Se sigue entonces que δ′(−x) = −δ′(x)?

S.5.A
Sea u(t) = H(t)t. Calcule u′gen(t).

S.5.B
Sea u(t) = H(t)e−λt. Muestre que u′gen(t) + λu(t) = δ(t).

S.5.C
Sea g(t) = H(t) sin(kt). Halle g′′gen(t) y muestre que

g′′gen(t) + k2g(t) = kδ(t). (13)

S.5.D
Sea f(t) = H(t) cos(kt). Muestre, de forma similar, que

f ′′gen(t) + k2f(t) = δ′(t). (14)

Lleve a cabo un cálculo similar para y(t) = H(t) sinh(kt) y q(t) = H(t) cosh(kt).

D.1
Halle el valor de la integral ∫ ∞

−∞
e−|x|f(x) dx, (15)

donde
f(x) =

{
x2 − α2, −2α ≤ x ≤ 2α;
0, d.o.m. α ∈ R. (16)
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D.2
Efectúe la integral ∫ ∞

−∞
xe−x

2
f(x) dx, (17)

donde
f(x) =

{
x+ λ, x ≥ 0;
x, x < 0. λ ∈ R. (18)

D.3
Calcule la integral ∫ ∞

0
e−kxx3 dx, k > 0. (19)

D.4
Evalúe la integral ∫ ∞

0
e−xxs−1 dx (20)

para s entero estrictamente positivo. Ésta integral, cuando se considera como función
del parámetro s, es conocida como la función Gamma de Euler Γ(s).

E.1
La Ley de Stefan-Boltzmann establece que la potencia disipada por unidad de área de
un cuerpo negro a temperatura T es proporcional a la cuarta potencia de T . Esta ley
puede obtenerse directamente de la Ley de Planck efectuando la integral

I = 2πh
c2

∫ ∞
0

ν3

e
hν
kT − 1

dν. (21)

Mediante la sustitución
β = hν

kT
, dβ = h

kT
dν, (22)

la integral se reduce a
I = 2πk4T 4

c2h3

∫ ∞
0

β3 1
eβ − 1 dβ. (23)

Efectúe esta integral y verifique el valor de la constante de la Ley de Stefan-Boltzmann
(pista: reescriba la fracción en términos de e−β y reconozca una serie geométrica. Cite
la suma resultante).
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Convolución

T.1.A
Sea H(t) la función de Heaviside. Halle la convolución (H ∗H)(t)

T.1.B
Sea f(t) = H(t)t. Halle (H ∗ f)(t).

T.2.A
Sea u(t) = H(t)t2. Halle (H ∗ u)(t).

T.2.B
Sea g(t) = H(t)t. Calcule (g ∗ g)(t). ¿Coincide este resultado con el de la convolución
anterior?

S.1
Sean f(t) = H(t)tn y g(t) = H(t)tk, con n, k ∈ N. Evalúe (f ∗ g)(t) sin usar la
definición.

S.2
Sea L el operador diferencial

L = D2 + λ2, λ ∈ R. (24)

Halle el propagador causal de L.

S.3
Definamos fα(x) = H(x)eαx. Evalúe la convolución (fk ∗ fω)(t).
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S.4.A
Considere la función u(x) = xH(x). Halle u′gen(x) y calcule (H ∗ u′gen)(x).

S.4.B
¿Es cierto que para una función causal u arbitraria H ∗ u′gen = u? Pruébelo.

S.5.A
Muestre que (f(x− a) ∗ g(x))(t) = (f ∗ g)(t− a).

S.5.B
Sea y(t) = H(t)−H(t− 1). Calcule (y ∗ y ∗ y)(t).

S.6
Sea u tal que

u′gen(x) = xH(x)− 3x2H(x− 1). (25)
Halle u(x).

S.7
Halle u causal que satisfaga

(H ∗ u)(t) + u(t) = H(t). (26)

S.8.A
Sean fk(t) = H(t) sin(kt). Halle la convolución (fk ∗ fω)(t), donde k, ω ∈ R.

S.8.B
Sea uk(t) = H(t) cos(kt). Halle (fk ∗ uω)(t) sin usar la definición.

S.8.C
De forma similar, halle (uk ∗ uω)(t) sin usar la definición.
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D.1.A
Sea

f(x) =
N∑
n=0

(−1)nH(x− πn). (27)

Sea además g(x) = H(x) sin x. Halle la convolución (f ∗ g)(x).

D.1.B
Grafique (f ∗ g)(x) para N = 3.

D.1.C
Tomemos ahora v(x) = H(x) cosx. Halle (f ∗ v)(x). Esto no debeŕıa tomarle más de
tres ĺıneas.

D.2.A
Sea L el operador diferencial dado por

L = D2 + λD + η, λ, η ∈ R. (28)

Halle el propagador causal de L.

D.2.B
Use el resultado anterior para resolver el problema a valores iniciales

f ′′(x) + 2f ′(x) + 2f(x) = 2 cosx, (29)

con f(0) = 0, f ′(0) = 1/2.
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Transformada de Laplace

T.1
Use la definición de la Transformada de Laplace para hallar L (δ) (z).

T.2
De forma similar, use la definición para hallar L (H) (z), donde H(t) es la función de
Heaviside.

S.1
Halle L (tnH(t)) (z), n ∈ N. Use este resultado para mostrar que

L
(
H(t)eαt tn−1

(n− 1)!

)
(z) = 1

(z − α)n , α ∈ R. (30)

S.2.A
Sea f(t) = H(t) sin(ωt). Halle L (f) (z).

S.2.B
Reemplace el seno por coseno y repita el cálculo.

S.3.A
Sea u una función causal y de crecimiento exponencial. Si U(z) = L (u) (z), muestre
que L

(
u′gen

)
(z) = zU(z).

S.3.B
Muestre también que L (t u(t)) (z) = −U ′(z), y por tanto que L (tn u(t)) (z) = (−1)nU(z),
provisto que esta transformada exista.
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S.4.A
Muestre que L (u(t− t0)) (z) = U(z)e−zt0 . Muestre que L (u(t)eαt) (z) = U(z − α).

S.4.B
Sea g causal y de crecimiento exponencial. Si G(z) = L (g) (z) y U(z) = L (u) (z),
muestre que L (u ∗ g) (z) = U(z)G(z).

S.5
Sean f(t) = H(t) sinhωt y u(t) = H(t) coshωt, con ω > 0. Halle L (f) (z) y L (u) (z).

S.6
Use el resultado de (30) para hallar u(t), donde

u′gen(t) = δ′(t)− 2H(t− 2). (31)

S.7.A
La transformada de Laplace de et

2/2 no existe debido a que esta función crece muy
fuertemente. Sin embargo, considere la función φ(t) = e−t

2/2. Esta función satisface
tφ(t) + φ′gen(t) = 0. Con esta información, y las propiedades de la transformada de
Laplace, muestre que L (φ) (z) ∝ ez

2/2.

S.7.B
Use la definición de la transformada de Laplace bilateral para observar que dicha cons-
tante de proporcionalidad es en realidad una integral que parece depender de z. De argu-
mentos para mostrar que dicha integral realmente no depende de z, y pruébelo. Consulte
el valor de dicha integral, o calcúlelo usted mismo. Finalmente, diga L

(
e−t

2/2
)

(z).

S.7.C
En internet puede encontrarse que L

(
e−t

2/2
)

(z) ∝ ez
2/2erfc

(
z/
√

2
)
, donde erfc(x) es

la función de error complementaria. ¿Hay algún error en nuestros cálculos? Investigue
y explique la diferencia.
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S.8
Calcule la integral ∫ ∞

0
e−kt sinnt dt, (32)

donde k, n ∈ R.

S.9
De forma similar, calcule ∫ ∞

0
e−tt2 cos2 nt dt, (33)

con n ∈ R

S.10
Use las propiedades de la Delta de Dirac para hallar

L
(1

3δ
′(3x− 2)

)
(z). (34)

S.11
Halle la siguiente transformada de Laplace:

L
(
H(x− µ)e−iνx

)
(z) (35)

Sugerencia: si le confunde la prioridad de las propiedades, emplee la definición.

D.1
Efectúe la integral ∫ ∞

λ
e−3t sin3 kt dt, 0 < λ <∞, k ∈ R. (36)

D.2
Sea

f(t) = H(t) 1
1 + e−t

, (37)

halle L (f) (z).
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D.3
Halle la transformada de Laplace de

f(t) = H(t)sin kt
kt

, k > 0. (38)

Sugerencia: usted no conoce

L
(
H(t)sin kt

kt

)
(z), (39)

pero si conoce L (H(t) sin kt) (z).

D.4.A
En Ingenieŕıa Eléctrica, las funciones de Bessel son ampliamente utilizadas. En parti-
cular, la función de Bessel de orden cero J0 satisface la ecuación diferencial

t2J ′′0 + tJ ′0 + t2J0 = 0, J0(0) = 1, J ′0(0) = 0. (40)

Reescriba la ecuación diferencial en términos de u(t) = H(t)J0(t) y halle L (u) (z),
suponiendo que L (u) (0) = 1, L (u)′ (0) = 0.

D.4.B
Empleando el resultado anterior, muestre que

sin t =
∫ t

0
J0(s)J0(t− s) ds, t ≥ 0. (41)

E.1.A
En Mecánica Cuántica es bien conocido el Principio de Incertidumbre. Este principio
establece que no pueden determinarse con infinita precisión la posición y el moméntum
de una part́ıcula de forma simultánea. En realidad, este no es ningún principio intŕınse-
camente cuántico; es solo una consecuencia de la naturaleza ondulatoria de la dinámica
del sistema. Para ilustrar esto, considere una onda plana limitada a una región de ancho
2L dada por

u(x) = [H(x+ L)−H(x− L)] eikx, con k = π

L
. (42)

Halle la transformada de Laplace de u.
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E.1.B
Ahora, tome z = iω. Es decir, considere la transformada sólo sobre el eje imaginario.
A este caso ĺımite de la Transformada de Laplace se le conoce como Transformada de
Fourier. Muestre que cuando z = iω,

L (u) (iω) = 2L sin(σL)
σL

, σ = ω − π

L
. (43)

E.1.C
Grafique L (u) (iω) como función de ω para varios L. Observe que esta gráfica tiene un
máximo en π/L, y que mientras más grande es L más delgado se vuelve el pico. Note
entonces que no puede obtener una señal concentrada en x y una señal concentrada en
ω al mismo tiempo. Este es un ejemplo simple del Principio de Incertidumbre. Más allá
de sus implicaciones en la Mecánica Cuántica, los ingenieros electrónicos lidiarán con
este fenómeno al filtrar señales muy breves en el tiempo, y los ingenieros eléctricos al
diseñar sistemas de radar.

E.2.A
A continuación trataremos de seguir paso a paso una cuenta importante de la gúıa de S.
Andrea. Considere una función R(z), que es la transformada de Laplace de otra cierta
función causal r(t). Supongamos adicionalmente que R(z) es una función racional de la
forma

R(z) = a0 + a1z + a2z
2 + · · ·+ anz

m

b0 + b1z + b2z2 + · · ·+ blzl
. (44)

El Teorema de Descomposición en Funciones Racionales (la base del método de frac-
ciones simples) indica que esta función racional puede escribirse como

R(z) =
N0∑
k=0

ckz
k +

N1∑
k=1

c1k

(z − α1)k +
N2∑
k=1

c2k

(z − α2)k + · · ·+
Np∑
k=1

cpk
(z − αp)k

, (45)

con N1 +N2 + · · ·+Np = l. Denominemos al j-ésimo sumando por

Rj(z) =
Nj∑
k=1

cjk
(z − αj)k

, (46)

Ahora trataremos de reconstruir a r(t) sumando por sumando. Piense que esta Rj(z)
es la transformada de Laplace de un cierto rj(t) causal, de manera que

L (rj(t)) (z) = Rj(z). (47)

Utilice los resultados de S.1 para mostrar que

rj(t) = H(t)
Nj∑
k=1

cjke
αjt

tk−1

(k − 1)! . (48)
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E.2.B
Ahora intentaremos reescribir la suma anterior. De Matemáticas IV, es conocido que la
serie de Taylor alrededor de z = 0 de etz es

etz =
∞∑
n=0

tnzn

n! . (49)

Por tanto, la serie de Laurent alrededor de z = 0 de etz/zk resulta

etz

zk
=
∞∑
n=0

tnzn−k

n! . (50)

Reescriba la expresión
etz

(z − αj)k
(51)

en términos de una serie de Laurent similar a (50), y muestre que

eαjt
tk−1

(k − 1)! = Res
(

etz

(z − αj)k
; αj

)
. (52)

E.2.C
Use las propiedades del residuo para mostrar que rj(t) = H(t)Res (etzRj(z); αj). Fi-
nalmente, y como Res (etzRj(z); αi) = 0 para i 6= j, concluya que

r(t) =
N0∑
k=0

ckδ
(k)(t) +H(t)

p∑
j=1

Res
(
etzR(z); αj

)
. (53)
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Transformada Inversa de Laplace

S.1.A
Considere la función

U(z) = z3 + 2z − 1
z2 + 1 . (54)

Verifique que si u(t) = δ′(t) +H(t) cos t−H(t) sin t, entonces L (u) (z) = U(z).

S.1.B
Use el método de los residuos para hallar u(t) mediante

u(t) = H(t)
∑
α∈C

Res
(
etzU(z); α

)
. (55)

S.1.C
Si en principio el método funciona para cualquier función racional, piense y explique
por qué este resultado y el anterior no coinciden (si hizo el ejercicio E.2 de la sección
anterior, ya se respondió en el procedimiento).

S.2
Sea g una función causal que satisface

g′′gen(t) = δ(t) +H(t). (56)

Halle g(t).

S.3
Resuelva el problema de valores iniciales

k2y′′(t) + y(t) = 0, y(0) = 0, y′(0) = − 2
k2 . (57)
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S.4
Halle y causal que satisfaga

xy′ + y = x sin x, y(0) = 0. (58)

S.5
Halle una función u tal que

u′′gen(t) = H(t− π) + 2δ′′(t) + 4δ′(2− t). (59)

S.6
Sea f una función causal que satisface

f ′′gen(t) = H(t)te−2t +H(t)t2e−4t + δ(t). (60)

Halle f(t).

S.7
Halle una función generalizada u tal que

u(t+ α) + u(t) = δ(t+ α), α ∈ R. (61)

S.8
Halle la convolución de la función Heaviside consigo misma n veces. Es decir, (H ∗H ∗
. . . ∗H)(t), donde la cantidad de convoluciones es n.

S.9.A
Sea u una función causal dada, y g una función causal arbitraria. Halle g tal que

(g ∗ u)(t) + λu(t) = 0, λ ∈ R. (62)
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S.9.B
Halle g tal que

(g ∗ u)(t) + λu(t) = βg(t), u(t) = H(t) sin(t), (63)
donde λ, β ∈ R, β 6= 0.

S.10
Halle una función u causal que satisfaga

L (u) (z) = z4 − 2z2 + 1
z4 + 2z2 + 1 . (64)

S.11
Resuelva el problema a valores iniciales

y′′′(t) + y(t) = t, y(0) = −1, y′(0) = 0, y′′(0) = 1, (65)

utilizando la transformada de Laplace.

D.1
Resuelva la ecuación diferencial

ty′′′(t) + 3y′′(t)− ty(t) = 0, y(0) = 0, y′(0) = 1
2 , y′′(0) = 0. (66)

D.2
Halle y causal que satisfaga

y′′(t) + 2y′(t) + 3y(t) = e−t sin t, y(0) = 0, y′(0) = 1. (67)

D.3
Sea L un operador diferencial tal que

L = D3 − 2D2 −D + 2. (68)

Halle el propagador causal de L.
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D.4
Halle una función u que satisfaga

u′′′gen(t) + ku(t) = δ(k)(t), k ∈ N, k ≤ 5. (69)

E.1
Sea Ln el operador diferencial dado por Ln = Dn + 1, de forma que

Ln(f) = f (n) + f, (70)

para f ∈ C∞. Halle el propagador causal de L.
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Derivada Generalizada

T.1
Para evaluar la integral podemos aprovechar el carácter ćıclico de las derivadas de cosx. Primero, consideremos
que la integral puede expresarse en términos de la aplicación de una función generalizada como〈

f(x)
∣∣ cosλx

〉
. (71)

Pero como 〈
f ′′gen(x)

∣∣ cosλx
〉

= −λ2 〈f(x)
∣∣ cosλx

〉
, (72)

entonces 〈
f(x)

∣∣ cosλx
〉

= − 1
λ2

〈
f ′′gen(x)

∣∣ cosλx
〉
. (73)

Hallemos ahora f ′′gen(x). Derivando una primera vez obtenemos

f ′gen(x) = δ(x)− δ(x− 2) +

 −1, 0 < x < 1;
1, 1 < x < 2;
0, d.o.m.

(74)

Derivando nuevamente,

f ′′gen(x) = δ′(x)− δ′(x− 2)− δ(x) + 2δ(x− 1)− δ(x− 2). (75)

Entonces, 〈
f ′′gen(x)

∣∣ cosλx
〉

= −λ sin 2λ+ 2 cosλ− cos 2λ− 1. (76)

Finalmente, ∫ ∞
−∞

f(x) cosλx dx = λ sin 2λ− 2 cosλ+ cos 2λ+ 1
λ2 , λ 6= 0. (77)

Para halla el valor de la integral para λ = 0 basta con tomar el ĺımite de la expresión cuando λ→ 0, o efectuar∫ ∞
−∞

f(x) dx, (78)

cuyo valor puede deducirse incluso gráficamente, y es 1.

T.2
Se procede exactamente de la misma forma que en el ejercicio T.1, notando ahora que〈

f(x)
∣∣ sinωx

〉
= − 1

ω2

〈
f ′′gen(x)

∣∣ sinωx
〉
. (79)

Derivando una primera vez, tenemos

f ′gen(x) = −δ
(
x+ 1

2

)
+ δ
(
x− 1

2

)
− δ(x− 1) +

{
2, −1 < x < −1/2;
0, d.o.m. (80)

Derivando de nuevo,

f ′′gen(x) = −δ′
(
x+ 1

2

)
+ δ′

(
x− 1

2

)
− δ′(x− 1) + 2δ(x+ 1)− 2δ

(
x+ 1

2

)
. (81)
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Por tanto 〈
f ′′gen(x)

∣∣ sinωx
〉

= ω cosω − 2 sinω + 2 sin
(
ω

2

)
. (82)

Finalmente, ∫ ∞
−∞

f(x) sinωxdx = −ω cosω + 2 sinω − 2 sin (ω/2)
ω2 , ω 6= 0, (83)

con ∫ ∞
−∞

f(x) sinωxdx = 0, ω = 0. (84)

T.3
Se procede de la misma forma que en T.1 y T.2, usando las relaciones conocidas. Véase que

f ′gen(x) = −3δ(x) +

 2, −1 < x < 0;
1, 0 < x < 1;
0, d.o.m.

(85)

Luego,
f ′′gen(x) = −3δ′(x) + 2δ(x+ 1)− δ(x)− δ(x− 1). (86)

Por tanto, 〈
f ′′gen(x)

∣∣ cosλx
〉

= −1 + cosλ. (87)

Finalmente ∫ ∞
−∞

f(x) cosλx dx = 1− cosλ
λ2 , λ 6= 0, (88)

con ∫ ∞
−∞

f(x) cosλx dx = 1
2 , λ = 0. (89)

S.1
Siguiendo el mismo orden de ideas de los ejercicios T.1, T.2 y T.3, observando con cuidado que〈

f(x)
∣∣ cos(kx− λt)

〉
= − 1

k2

〈
f ′′gen(x)

∣∣ cos(kx− λt)
〉
. (90)

La primera derivada generalizada de f resulta

f ′gen(x) = −2π
k
δ
(
x− 2π

k

)
+
{

1, 0 < x < 2π/k;
0, d.o.m. (91)

Luego,
f ′′gen(x) = −2π

k
δ′
(
x− 2π

k

)
+ δ(x)− δ

(
x− 2π

k

)
, (92)

y entonces 〈
f ′′gen(x)

∣∣ cos(kx− λt)
〉

= 2π sinλt. (93)

Finalmente, ∫ ∞
−∞

f(x) cos(kx− λt) dx = −2π sinλt
k2 , k > 0. (94)
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S.2.A
Consideremos la acción de x2δ′(x) sobre una función de prueba arbitraria φ ∈ C∞. Vemos que, por las
propiedades de las funciones generalizadas,〈

x2δ′(x)
∣∣φ(x)

〉
=
〈
δ′(x)

∣∣x2φ(x)
〉
. (95)

Luego, aplicando las propiedades de la derivada generalizada,〈
δ′(x)

∣∣x2φ(x)
〉

= −
〈
δ(x)

∣∣ 2xφ(x) + x2φ′(x)
〉

= 0, ∀φ ∈ C∞. (96)

Esto implica entonces que, en el sentido de distribuciones,

x2δ′(x) = 0. (97)

S.2.B
De forma similar, 〈

x3δ′′(x)
∣∣φ(x)

〉
=
〈
δ′′(x)

∣∣x3φ(x)
〉

(98)

= −
〈
δ′(x)

∣∣ 3x2φ(x) + x3φ′(x)
〉

(99)

=
〈
δ(x)

∣∣ 6xφ(x) + 6x2φ′(x) + x3φ′′(x)
〉

= 0, (100)

para todo φ ∈ C∞. El argumento es el mismo, y el resultado es que x3δ′′(x) = 0, en el sentido de distribuciones.

S.2.C
La idea es la siguiente: considere 〈

xkδ(n)(x)
∣∣φ(x)

〉
=
〈
δ(n)(x)

∣∣xkφ(x)
〉
. (101)

Mediante las propiedades de la derivada generalizada,〈
δ(n)(x)

∣∣xkφ(x)
〉

= (−1)n
〈
δ(x)

∣∣ dn
dxn

(
xkφ(x)

)〉
. (102)

Pero, como
〈
δ(x)

∣∣xsψ(x)
〉

= 0, ∀ψ ∈ C∞ y s > 0, entonces después de derivar n veces a xkφ(x), al final todos
los términos resultantes involucran el producto de φ, o alguna de sus derivadas, con un factor de la forma xs,
s > 0, que al ser evaluados con δ(x), resultan en 0. Más formalmente, el resultado de derivar n veces a xkφ(x)
es de la forma ∑

l−m=k−n

clmx
lφ(m)(x), (103)

donde clm son constantes apropiadas, y 0 < k − n ≤ l ≤ k. Por tanto, como〈
δ(x)

∣∣xlφ(m)(x)
〉

= 0, para l, m > 0, (104)

entonces
(−1)n

〈
δ(x)

∣∣ dn
dxn

(
xkφ(x)

)〉
= 0, (105)

y por consecuencia, 〈
xkδ(n)(x)

∣∣φ(x)
〉

= 0, k > n. (106)

Si ahora dejamos que k = n, el argumento es exactamente el mismo con una pequeña salvedad; ahora habrá
un término, y solo uno, que no va acompañado de alguna potencia de x: el que resulta de las k derivaciones
sucesivas del factor xk. Este término, que puede calcularse directamente como

k!φ(x), (107)
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es el único que no se anula al tomar

(−1)n
〈
δ(x)

∣∣ dn
dxn

(
xkφ(x)

)〉
, (108)

(recuerde que k = n) y por tanto,〈
xkδ(n)(x)

∣∣φ(x)
〉

= (−1)nn!φ(0) =
〈
(−1)nn! δ(x)

∣∣φ(x)
〉
. (109)

Finalmente,
xkδ(n)(x) = (−1)nn! δ(x). (110)

S.3.A
Supongamos inicialmente que k > 0. De aqúı, que si H es la función de Heaviside, entonces

H(kx) = H(x), (111)

según la definición de la función de Heaviside. Ahora, definamos la convención

Lu = d

du gen
, (112)

sólo para tener en claro respecto a cuál variable se efectúan las derivadas y hacer más legible el texto. Es sabido
que

LxH(x) = δ(x). (113)

En ese sentido, derivando a ambos lados

LxH(kx) = LxH(x) = δ(x). (114)

Si tomamos que u = kx, entonces, en virtud de la regla de la cadena,

LxH(kx) = LuH(u) · Lxu = kδ(u) = kδ(kx). (115)

Por tanto,
kδ(kx) = δ(x) que implica δ(kx) = 1

k
δ(x). (116)

De forma similar, si k < 0,
H(kx) = 1−H(x). (117)

Derivando a ambos lados, obtenemos que
kδ(kx) = −δ(x), (118)

y por ende,
δ(kx) = − 1

k
δ(x), k < 0. (119)

Finalmente, queda probado que
δ(kx) = 1

|k|δ(x). (120)

Ahora, veamos que en efecto estas dos funciones generalizadas son iguales en el sentido distribucional. Sea
f ∈ C∞ arbitraria y consideremos ∫ ∞

−∞
δ(kx)f(x) dx. (121)

Supongamos que k > 0. Véase entonces que, si tomamos el cambio de variables u = kx, la integral se modifica
a

1
k

∫ ∞
−∞

δ(u)f
(
u

k

)
du = 1

k
f(0) =

∫ ∞
−∞

1
k
δ(x)f(x) dx. (122)
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Por ende, obtenemos la relación
δ(kx) = 1

k
δ(x), k > 0. (123)

Si k < 0, del cambio de variables u = kx obtenemos la misma integral, pero ojo, con los extremos de
integración cambiados, a causa del cambio de signo inducido por k.

1
k

∫ −∞
∞

δ(u)f
(
u

k

)
du = − 1

k

∫ ∞
−∞

δ(u)f
(
u

k

)
du. (124)

Esta es exactamente la misma relación, solo que con un signo (−) multiplicando. Por tanto, obtenemos la
relación

δ(kx) = − 1
k
δ(x), k < 0. (125)

Una vez más, vemos que
δ(kx) = 1

|k|δ(x). (126)

S.3.B
Sin olvidar la convención, es útil observar que la regla de la cadena permite establecer una correspondencia
entre las derivadas respecto a u y x. Si f es alguna función suave a trozos,

Lxf(u) = k · Luf(u) =⇒ Lx = kLu. (127)

Por tanto, sigamos el análisis del ejercicio anterior. Si k > 0, entonces

LxH(x) = kLuH(u). (128)

Derivando respecto a x nuevamente, y recordando la correspondencia establecida,

L2
xH(x) = kLx (LuH(u)) (129)

= k2L2
uH(u). (130)

Entonces
δ′(x) = k2δ′(kx), que implica δ′(kx) = 1

k2 δ
′(x) (131)

Para k < 0, la relación obtenida era
LxH(x) = −kLuH(u). (132)

Esto nos lleva de inmediato a
L2
xH(x) = −k2L2

uH(u), (133)

que equivale a
δ′(kx) = − 1

k2 δ
′(x), k < 0. (134)

Finalmente, queda probado que
δ′(kx) = ± 1

k2 δ
′(x), según k ≷ 0. (135)

S.4.A
Para probar esta propiedad solo es necesario recordar el ejercicio S.3.A, y aplicar el resultado para k = −1.
La prueba es obvia e inmediata.
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S.4.B
De igual manera, la prueba resulta trivial en virtud del resultado de S.3.B

S.5.A
Existen dos manera de proceder. La primera, mediante la definición de derivada generalizada, y la segunda,
empleando la fórmula de Leibniz para derivadas generalizadas. Observe que la función de Heaviside no hace
más que esconder el carácter de función a trozos de u mediante el śımbolo H. Bien podŕıamos haber escrito a
u mediante

u(t) =
{

t, x ≥ 0;
0, x < 0, (136)

y hallar u′gen(t) como

u′gen(t) =
{

1, x > 0;
0, x < 0, (137)

o, emplear la fórmula de Leibniz y hallar que

u′gen(t) = δ(t)t+H(t) = H(t) =
{

1, x ≥ 0;
0, x < 0, (138)

No se deje perturbar por la diferencia sutil en el dominio de la función resultante. Más adelante en sus clases
verá que esto es indiferente a efectos de la teoŕıa de integración que está desarrollando. En la mayoŕıa de los
casos, si la función no está comprendida por demasiados ”trozos”, es muy conveniente escribirla mediante la
Heaviside, y usar la fórmula de Leibniz para derivar.

S.5.B
Si u(t) = H(t)e−λt, entonces

u′gen(t) = δ(t)e−λt − λH(t)e−λt = δ(t)− λH(t)e−λt. (139)

Por tanto, se verifica de inmediato que
u′gen(t) + λu(t) = δ(t). (140)

S.5.C
Puede verse fácilmente que

g′gen(t) = δ(t) sin(kt) + kH(t) cos(kt) = kH(t) cos(kt). (141)

Luego,
g′′gen(t) = δ(t)k cos(kt)− k2H(t) sin(kt) = kδ(t)− k2H(t) sin(kt). (142)

Entonces, se verifica de inmediato que

g(t) + k2g′′gen(t) = kδ(t). (143)
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S.5.D
De forma similar,

f ′gen(t) = δ(t) cos(kt)− kH(t) sin(kt) = δ(t)− kH(t) sin(kt). (144)

De aqúı que
f ′′gen(t) = δ′(t)− k2H(t) cos(kt). (145)

Por ende, se verifica que
f ′′gen(t) + k2f(t) = δ′(t). (146)

Si ahora tomamos y(t) = H(t) sinh(kt), vemos que

y′gen(t) = kH(t) cosh(kt), (147)

y entonces
y′′gen(t) = kδ(t) + k2H(t) sinh(kt). (148)

Por tanto, y satisface
y′′gen(t)− k2y(t) = kδ(t). (149)

De forma completamente análoga, q(t) = H(t) cosh(kt) también satisface

q′′gen(t)− k2q(t) = δ′(t). (150)

D.1
Primero, observemos que tanto e−|x| como f(x) son funciones pares. Por tanto, su producto también es par.
De esta manera, podemos reescribir la integral como

2
∫ ∞
−∞

e−xg(x) dx, g(x) =
{

x2 − α2, 0 ≤ x ≤ 2α;
0, d.o.m. (151)

Concentrémonos entonces en 〈
g(x)

∣∣ e−x〉 . (152)

Al igual que en los ejercicios T.1, T.2 y T.3, el objetivo es aprovechar la naturaleza ćıclica de las derivadas de
ex. Si buscamos expresar la integral en términos de la aplicación de la Delta y sus derivadas, entonces tendremos
que derivar tres veces para eliminar la parte “clásica”de la función. En ese sentido, el primer resultado que
debe obtenerse es

〈
g′′′gen(x)

∣∣ e−x〉 = −
〈
g(x)

∣∣ d3

dx3 (e−x)
〉

= −
〈
g(x)

∣∣ − e−x〉 =
〈
g(x)

∣∣ e−x〉 . (153)

Es decir, resulta que 〈
g′′′gen(x)

∣∣ e−x〉 =
〈
g(x)

∣∣ e−x〉 . (154)

Procedamos ahora a hallar g′′′gen(x). La primera derivada resulta en

g′gen(x) = −α2δ(x)− 3α2δ(x− 2α) +
{

2x, 0 < x < 2α;
0, d.o.m. (155)

Luego,

g′′gen(x) = −α2δ′(x)− 3α2δ′(x− 2α)− 4αδ(x− 2α) +
{

2, 0 < x < 2α;
0, d.o.m. (156)

Por tanto,
g′′′gen(x) = −α2δ′′(x)− 3α2δ′′(x− 2α)− 4αδ′(x− 2α) + 2δ(x)− 2δ(x− 2α). (157)
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Evaluando, obtenemos 〈
g′′′gen(x)

∣∣ e−x〉 = −α2 − 3α2e−2α − 4αe−2α + 2− 2e−2α (158)

= 2− α2 − e−2α(3α2 + 4α+ 2) (159)

Finalmente, como 〈
f(x)

∣∣ e−|x|〉 = 2
〈
g(x)

∣∣ e−x〉 , (160)

entonces ∫ ∞
−∞

e−|x|f(x) dx = 4− 2α2 − 2e−2α(3α2 + 4α+ 2), α > 0. (161)

D.2
Consideremos 〈

f(x)
∣∣xe−x2

〉
. (162)

No es dif́ıcil notar que,
− 1

2
d

dx
e−x

2
= xe−x

2
. (163)

De aqúı, que
− 1

2

〈
f(x)

∣∣ d
dx
e−x

2
〉

=
〈
f(x)

∣∣xe−x2
〉
. (164)

Pero
− 1

2

〈
f(x)

∣∣ d
dx
e−x

2
〉

= 1
2

〈
f ′gen(x)

∣∣ e−x2
〉

(165)

Fácilmente podemos obtener a f ′gen derivando.

f ′gen(x) = λδ(x) +
{

1, x > 0;
1, x < 0. (166)

Entonces, la integral original se separa en dos partes, pues

1
2

〈
f ′gen(x)

∣∣ e−x2
〉

= λ

2

〈
δ(x)

∣∣ e−x2
〉

+ 1
2

∫ ∞
−∞

e−x
2
dx. (167)

La integral de la derecha es una integral de tabla, aunque fácilmente puede ser hallada mediante el Teorema
de Fubini y un cambio a coordenadas polares. Finalmente, evaluando obtenemos∫ ∞

−∞
f(x)xe−x

2
dx = λ

2 +
√
π

2 . (168)

Este ejercicio es un ejemplo de que no todo en la vida es fácil, y aunque no podamos reducir la integración a
meras aplicaciones de la Delta y sus propiedades, bien podemos transformar el problema sin resolver a varios
problemas más sencillos, o ya resueltos previamente.

D.3
Consideremos que ∫ ∞

0
e−kxx3 dx =

∫ ∞
−∞

H(x)e−kxx3 dx. (169)

Si definimos f(x) = H(x)x3, entonces nuestro problema puede reescribirse como〈
f(x)

∣∣ e−kx〉 . (170)
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Siguiendo el esquema usual, no es dif́ıcil ver que〈
f (4)
gen(x)

∣∣ e−kx〉 = k4 〈f(x)
∣∣ e−kx〉 , (171)

y por tanto, 〈
f(x)

∣∣ e−kx〉 = 1
k4

〈
f (4)
gen(x)

∣∣ e−kx〉 . (172)

Sin embargo, se debe tener cuidado: en este procedimiento está escondido un detalle teórico crucial. Hasta
ahora, hemos podido aprovechar funciones de soporte compacto para transformar una integral usual en la
aplicación de una función generalizada. Sin embargo, este no es el caso. H(x)x3 no se anula fuera de un
intervalo finito. Pero aún aśı, como e−kx decrece más rápido que cualquier polinomio, sabemos que la integral∫ ∞

−∞
H(x)e−kxx3 dx (173)

converge. Además, como e−kxxs tiende a cero a medida que x → ∞ para k, s > 0, aún podemos aplicar
la propiedad

〈
f ′gen

∣∣ g〉 = −
〈
f
∣∣ g′〉, que no es más que integración por partes. Entonces, en resumen, esta

integral puede efectuarse empleando los métodos hasta ahora aprendidos, pero al margen de lo permitido por
la teoŕıa; probablemente lo hizo sin saberlo en el ejercicio anterior (¿Puede decir por qué?). Tenga esto muy
claro. Simplemente derivando cuatro veces seguidas a f ,

f (4)
gen(x) = 3! δ(x), (174)

de manera que 〈
f(x)

∣∣ e−kx〉 = 1
k4

〈
f (4)
gen(x)

∣∣ e−kx〉 = 3!
k4 , (175)

y finalmente ∫ ∞
0

e−kxx3 dx = 3!
k4 . (176)

D.4
Esta integral puede efectuarse fácilmente observando los argumentos y el procedimiento del ejercicio anterior.
Basta con tomar f(x) = H(x)xs−1 y extender la relación a〈

f (s)
gen(x)

∣∣ e−kx〉 = (−1)2sks
〈
f(x)

∣∣ e−kx〉 = ks
〈
f(x)

∣∣ e−kx〉 , (177)

que resulta en 〈
f(x)

∣∣ e−kx〉 = 1
ks

〈
f (s)
gen(x)

∣∣ e−kx〉 . (178)

Como
f (s)
gen(x) = (s− 1)! δ(x), (179)

entonces ∫ ∞
0

e−kxxs−1 dx = (s− 1)!
ks

. (180)

Para el caso particular k = 1, entonces ∫ ∞
0

e−xxs−1 dx = (s− 1)! (181)

de manera que
Γ(s) = (s− 1)! (182)
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E.1
Olvidemos las constantes por ahora y concentrémonos en∫ ∞

0
β3 1
eβ − 1 dβ. (183)

Notemos que el integrando puede ser reescrito como

β3 1
eβ − 1 = e−ββ3 1

1− e−β = e−ββ3
∞∑
n=0

e−nβ . (184)

Esta modificación es válida para nuestra integral, puesto que la serie converge absolutamente para e−β < 1; es
decir, β > 0. Agrupando, la integral resulta∫ ∞

0
β3 1
eβ − 1 dβ =

∫ ∞
0

β3
∞∑
n=0

e−β(n+1) dβ =
∞∑
n=0

∫ ∞
0

e−β(n+1)β3 dβ, (185)

donde el intercambio entre suma y signo de integración es ĺıcito debido a que la suma converge absolutamente
para β > 0. Sin embargo, esta integral ya fue calculada: de hecho, es un caso particular del ejercicio D.3, con
k = n+ 1. Por tanto,

∞∑
n=0

∫ ∞
0

e−β(n+1)β3 dβ = 3!
∞∑
n=0

1
(n+ 1)4 = 3!

∞∑
n=1

1
n4 . (186)

Esta suma es bien conocida, y su valor es
∞∑
n=1

1
n4 = π4

90 . (187)

Finalmente, la integral original resulta

I = 3! π
4

90
2πk4

c2h3 T
4, (188)

y por tanto, la constante de la Ley de Stefan-Boltzmann resulta

σ = 3! π
5

90
2k4

c2h3 = 2π5k4

15c2h3 . (189)

Este es precisamente el valor de dicha constante.
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Convolución

T.1.A
Para hallar (H ∗H)(t) basta con evaluar directamente

(H ∗H)(t) = H(t)
∫ t

0
1 · 1 ds = H(t)t. (190)

T.1.B
De forma similar,

(H ∗ f)(t) = H(t)
∫ t

0
s · 1 ds = 1

2H(t)t2. (191)

T.2.A
Evaluando directamente,

(H ∗ u)(t) = H(t)
∫ t

0
s2 · 1 ds = 1

3H(t)t3. (192)

T.2.B
Tomando

(g ∗ g)(t) = H(t)
∫ t

0
(t− s)s ds = (193)

= 1
2H(t)t3 − 1

3H(t)t3 (194)

= 1
6H(t)t3. (195)

Es evidente que los resultados no coinciden.

S.1
Supongamos que

φ(t) = (f ∗ g)(t) =
[
H(t)tn ∗H(t)tk

]
(t). (196)

Derivando n veces la expresión, obtenemos

φ(n)
gen(t) = n!

[
H(t) ∗H(t)tk

]
(t), (197)

en virtud de la derivada generalizada de una convolución, y recordando que

[H(t)tn]′gen = nH(t)tn−1. (198)
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Ahora, si derivamos k veces de nuevo, obtenemos

φ(n+k)
gen (t) = n! k! (H ∗H) (t). (199)

Derivando una vez más,

φ(n+k+1)
gen (t) = n! k!

(
H ′gen ∗H

)
(t) = n! k! (δ ∗H) (t) (200)

= n! k!H(t). (201)

Finalmente, y observando la relación (198), vemos que φ(t) ha de ser

φ(t) = n! k!
(n+ k + 1)!H(t)tn+k+1. (202)

Es decir, [
H(t)tn ∗H(t)tk

]
(t) = n! k!

(n+ k + 1)!H(t)tn+k+1. (203)

S.2
Para hallar G(x) tal que L(G)(x) = δ(x), tomemos

G(x) = H(x)g(x). (204)

Con g ∈ C∞ arbitraria. Como
D(G)(x) = g(0)δ(x) +H(x)g′(x), (205)

y además
D2(G)(x) = g(0)δ′(x) + g′(0)δ(x) +H(x)g′′(x), (206)

entonces
L(G)(x) = g′(0)δ(x) + g(0)δ′(x) +H(x)L(g)(x). (207)

Por tanto, para que se satisfaga L(G)(x) = δ(x), debe suceder que

g(0) = 0, g′(0) = 1, y D2g(x) + λ2g(x) = 0. (208)

Las soluciones de D2g(x) + λ2g(x) = 0 son ampliamente conocidas, pues este es el problema del oscilador
armónico. Considerando que g(0) = 0, entonces la solución buscada es de la forma

g(x) = C sin(λx), C ∈ R. (209)

La última condición g′(0) = 1 impone que C = λ−1, de manera que

g(x) = 1
λ

sin(λx). (210)

Finalmente,
G(x) = 1

λ
H(x) sin(λx). (211)

Este resultado está en perfecto acuerdo con el obtenido en (143).
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S.3
Supongamos que k 6= ω. La convolución puede ser evaluada directamente mediante

(fk ∗ fω)(t) = H(t)
∫ t

0
ekt−kseωs ds = H(t)ekt

∫ t

0
es(ω−k) ds (212)

= H(t)ekt 1
ω − k

(
et(ω−k) − 1

)
. (213)

Por tanto,

(fk ∗ fω)(t) = H(t)e
ωt − ekt

ω − k = H(t)e
kt − eωt

k − ω , k 6= ω. (214)

Si k = ω, entonces la integral (212) se simplifica a

H(t)ekt
∫ t

0
ds = H(t)tekt = H(t)teωt. (215)

Entonces,
(fk ∗ fω)(t) = H(t)tekt = H(t)teωt, k = ω. (216)

S.4.A
u′gen puede hallarse directamente como

u′gen(x) = H(x). (217)

Luego, y recordando el resultado del ejercicio T.1.A, vemos que

(H ∗ u′gen)(x) = (H ∗H)(x) = H(x)x. (218)

Parece entonces que la convolución con la función Heaviside sirve para obtener la integral (causal) de una
función generalizada.

S.4.B
Sea u una función causal, suave a trozos. Basta con aplicar la propiedad de la derivada de una convolución
para probar esto:

(H ∗ u′gen) = (H ∗ u)′gen = (H ′gen ∗ u) = (δ ∗ u) = u. (219)

Es decir,
(H ∗ u′gen) = u. (220)

Esta relación es sumamente útil para la antiderivación de funciones generalizadas. Más adelante, en la sección
de Transformada de Laplace Inversa, se usará un método más directo.

S.5.A
Ésta propiedad puede mostrarse trivialmente mediante

(f(t− a) ∗ g(t))(t) =
∫ ∞
−∞

f(t− a− s)g(s) ds = (f ∗ g)(t− a). (221)

Aunque parezca insignificante, es una propiedad que permite ahorrar tiempo valioso.
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S.5.B
Primero, hallemos (y ∗ y)(t). Para evitar notación incómoda, definamos Hα(t) = H(t− α). Evaluando,

(H −H1 ∗H −H1)(t) = (H ∗H −H1)(t)− (H1 ∗H −H1)(t) (222)
= (H ∗H)(t)− 2(H ∗H1)(t) + (H1 ∗H1)(t). (223)

Entonces, aplicando los resultados de (221) y (203),

(y ∗ y)(t) = tH(t)− 2(t− 1)H(t− 1) + (t− 2)H(t− 2). (224)

De nuevo, para evitar notación incómoda, definamos rα(t) = (t − α)H(t − α), de manera que (y ∗ y)(t) =
r(t)− 2r1(t) + r2(t). Ahora, consideremos a (y ∗ y ∗ y)(t):

(y ∗ y ∗ y)(t) = (r − 2r1 + r2 ∗H −H1)(t) (225)
= (r − 2r1 + r2 ∗H)(t)− (r − 2r1 + r2 ∗H1)(t) (226)
= (r − 2r1 + r2 ∗H)(t)− (r − 2r1 + r2 ∗H)(t− 1). (227)

Entonces, basta con calcular

(r − 2r1 + r2 ∗H)(t) = (r ∗H)(t)− 2(r1 ∗H)(t) + (r2 ∗H)(t) (228)

= 1
2 t

2H(t)− (t− 1)2H(t− 1) + 1
2(t− 2)2H(t− 2). (229)

Luego,
(r − 2r1 + r2 ∗H)(t)− (r − 2r1 + r2 ∗H)(t− 1) (230)

se reduce a 1
2 t

2H(t)− 3
2(t− 1)2H(t− 1) + 3

2(t− 2)2H(t− 2)− 1
2(t− 3)2H(t− 3). (231)

Finalmente,

(y ∗ y ∗ y)(t) = 1
2 t

2H(t)− 3
2(t− 1)2H(t− 1) + 3

2(t− 2)2H(t− 2)− 1
2(t− 3)2H(t− 3), (232)

y jamás tuvimos que hacer una sola integral. Aqúı puede observarse el gran poder de propiedades aparentemente
inocentes como (221).
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S.6
Para hallar u basta con aplicar el resultado de (220). Es decir,

(H ∗ u′gen)(x) = (H ∗ r)(x)− 3(H(x) ∗ x2H(x− 1))(x), (233)

siguiendo la notación de (225). El término de la izquierda es sencillo de evaluar, y aunque podŕıa reescribirse
el término de la derecha para aplicar (221) y (203), es más conveniente emplear la definición, pues

(H(x) ∗ x2H(x− 1))(x) = H(t− 1)
∫ t

1
s2 ds = 1

3H(t− 1)(t3 − 1), (234)

y por tanto
(H ∗ u′gen)(x) = 1

2x
2H(x)− (t3 − 1)H(t− 1). (235)

Finalmente,
u(x) = 1

2x
2H(x)− (t3 − 1)H(t− 1). (236)

S.7
Para hallar una solución a la ecuación basta con tomar la derivada de la expresión

(H ∗ u)′gen(t) + u′gen(t) = δ(t). (237)

Sin embargo, esta ecuación es equivalente a

u′gen(t) + u(t) = δ(t). (238)

Esta ecuación ya fue resuelta en la sección de Derivada Generalizada. Citando el resultado de (140), vemos que

u(t) = H(t)e−t (239)

es la solución buscada. Sin embargo, a pesar de que este es un resultado notable, puede obtenerse manualmente
observando que la ecuación inicial se reduce al problema de hallar el propagador de

L = D + 1. (240)

Esta verificación se deja al lector.

S.8.A
Supongamos que k 6= ω. Para hallar la convolución, reescribamos

fk(t) = H(t)e
ikt − e−ikt

2i = 1
2iH(t)eikt − 1

2iH(t)e−ikt. (241)

Adicionalmente, para hacer la escritura más sencilla, definamos

vk(t) = 1
2iH(t)eikt, y v−k(t) = 1

2iH(t)e−ikt, (242)

tal que
fk = vk − v−k. (243)
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Entonces,

(fk ∗ fω) = (vk − v−k ∗ vω − v−ω) (244)
= (vk ∗ vω − v−ω)− (v−k ∗ vω − v−ω) (245)
= (vk ∗ vω)− (vk ∗ v−ω)− (v−k ∗ vω) + (v−k ∗ v−ω). (246)

Cada una de estas convoluciones pueden resolverse fácilmente recordando (214). Como todas son exactamente
de la misma forma, solo que con los parámetros cambiados, basta con resolver una y modificar apropiadamente:

(vk ∗ vω)(t) = −1
4H(t)e

ikt − eiωt

ik − iω = − 1
4iH(t)

(
eikt − eiωt

k − ω

)
. (247)

Por tanto, como

(vk ∗ vω)(t) + (v−k ∗ v−ω)(t) = − 1
4iH(t)

(
eikt − eiωt

k − ω

)
+ 1

4iH(t)
(
e−ikt − e−iωt

k − ω

)
(248)

= − H(t)
4i(k − ω)

(
eikt − e−ikt − (eiωt − e−iωt)

)
(249)

= − 1
2(k − ω) (H(t) sin kt−H(t) sinωt) (250)

= 1
2(k − ω) (fω(t)− fk(t)) , (251)

y

(v−k ∗ vω)(t) + (vk ∗ v−ω)(t) = 1
4iH(t)

(
e−ikt − eiωt

k + ω

)
− 1

4iH(t)
(
eikt − e−iωt

k + ω

)
(252)

= − H(t)
4i(k + ω)

(
eikt − e−ikt + eiωt − e−iωt

)
(253)

= − 1
2(k + ω) (fk(t) + fω(t)). (254)

Entonces,

(fk ∗ fω)(t) = 1
2(k − ω) (fω(t)− fk(t)) + 1

2(k + ω) (fk(t) + fω(t)) (255)

= 1
2(k2 − ω2) ((k + ω)(fω(t)− fk(t)) + (k − ω)(fk(t) + fω(t))) (256)

= 2kfω(t)− 2ωfk(t)
2(k2 − ω2) = kfω(t)− ωfk(t)

k2 − ω2 . (257)

Finalmente,
(fk ∗ fω)(t) = kfω(t)− ωfk(t)

k2 − ω2 = ωfk(t)− kfω(t)
ω2 − k2 , k 6= ω. (258)

Observe la simetŕıa en los parámetros; esto no es una coincidencia. Si una función arbitraria fk depende
discretamente de un parámetro k, la forma de la convolución (fk ∗ fω) no debe depender del orden en que
se tome, pues (fk ∗ fω) = (fω ∗ fk). Esto también puede observarse en el resultado (214). Si una convolución
aśı le da una forma particular al resultado según el orden en que se tome, puede estar seguro de que se ha
equivocado. Para considerar el caso k = ω basta con tomar

ĺım
k→ω

kfω(t)− ωfk(t)
k2 − ω2 = H(t) ĺım

k→ω

k sinωt− ω sin kt
k2 − ω2 ; (259)

éste ĺımite puede hallarse mediante la regla de L’Hôpital, y

H(t) ĺım
k→ω

sinωt− ωt cos kt
2k = 1

2ωH(t) sinωt− 1
2 tH(t) cosωt. (260)

Por tanto
(fk ∗ fω)(t) = 1

2ωfω(t)− 1
2 tuω(t), k = ω, (261)

donde uω(t) = H(t) cosωt.
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S.8.B
Supongamos que k 6= ω. Basta con notar que (fω)′gen = ωuω, y por tanto

(fk ∗ fω)′gen = ω(fk ∗ uω), (262)

de manera que
(fk ∗ uω) = 1

ω
(fk ∗ fω)′gen. (263)

Evaluando, vemos que

(fk ∗ uω)(t) = 1
ω

k(fω)′gen(t)− ω(fk)′gen(t)
k2 − ω2 = 1

ω

kωuω(t)− kωuk(t)
k2 − ω2 . (264)

Finalmente,
(fk ∗ uω) = k

uω(t)− uk(t)
k2 − ω2 , k 6= ω. (265)

Para el caso k = ω, el procedimiento es similar, ahora notando que (uw)′gen = δ − ωfω:

(fk ∗ uω)(t) = 1
ω

( 1
2ω (fω)′gen(t)− 1

2(tuω(t))′gen
)

(266)

= 1
ω

(1
2uω(t)− 1

2uω(t)− 1
2 tδ(t) + ω

2 tfω(t)
)

(267)

= 1
2 tfω(t). (268)

Por ende
(fk ∗ uω)(t) = 1

2 tfω(t), k = ω. (269)

S.8.C
Supongamos k 6= ω. En el mismo orden de ideas, y notando que

(fk ∗ uω)′gen = k(uk ∗ uω), (270)

obtenemos una relación similar, pues
(uk ∗ uω) = 1

k
(fk ∗ uω)′gen. (271)

Entonces
(uk ∗ uω)(t) = δ(t)− ωfω(t)− δ(t) + kfk(t)

k2 − ω2 = kfk(t)− ωfω(t)
k2 − ω2 . (272)

Por ende,
(uk ∗ uω)(t) = kfk(t)− ωfω(t)

k2 − ω2 , k 6= ω (273)

Para el caso k = ω, basta con tomar

(uk ∗ uω)(t) = 1
k

(1
2fω(t) + ω

2 tuω(t)
)

= 1
2ωfω(t) + 1

2 tuω(t). (274)

Finalmente,
(uk ∗ uω)(t) = 1

2ωfω(t) + 1
2 tuω(t), k = ω. (275)
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D.1.A
Para hallar (f ∗ g) basta con tomar la convolución término a término:

(f ∗ g)(x) =
N∑
n=0

(−1)n(H(x− πn) ∗H(x) sin x)(x). (276)

Como

(H(x− πn) ∗H(x) sin x)(x) = (H(x) ∗H(x) sin x)(x− πn) (277)
= H(x− πn)(1− cos(x− πn)). (278)

Entonces, obtenemos que

(f ∗ g)(x) =
N∑
n=0

(−1)nH(x− πn)−
N∑
n=0

(−1)nH(x− πn) cos(x− πn). (279)

D.1.B
Graficando (f ∗ g)(x) para N = 3 se obtiene la siguiente figura:

D.1.C
Como g′gen = v, entonces

(f ∗ v)(x) = (f ∗ g)′gen(x) =
N∑
n=0

(−1)n
(
δ(x− πn)(1− cos(x− πn)) +H(x− πn) sin(x− πn)

)
(280)

=
N∑
n=0

(−1)nH(x− πn) sin(x− πn). (281)
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D.2.A
Para hallar el propagador causal, consideremos el problema

L(G)(x) = δ(x), (282)

con G(x) = H(x)g(x). Como

D(G)(x) = g(0)δ(x) +H(x)g′(x) (283)
D2(G)(x) = g′(0)δ(x) + g(0)δ′(x) +H(x)g′′(x), (284)

entonces
L(G)(x) = g′(0)δ(x) + g(0)δ′(x) + λg(0)δ(x) +H(x)L(g)(x). (285)

De esta manera, vemos que G es el propagador causal de L si g satisface

L(g) = 0, g(0) = 0, g′(0) = 1. (286)

Las soluciones de
L(g) = D2g + λDg + ηg = 0 (287)

son ampliamente conocidas, y pueden ser calculadas fácilmente usando los métodos de Matemáticas IV. Las
dos soluciones independientes vienen dadas por las ráıces del polinomio auxiliar y son

exp
[
x

(
−λ2 −

∆
2

)]
y exp

[
x

(
−λ2 + ∆

2

)]
, (288)

donde ∆ =
√
λ2 − 4η. Por tanto, si

g(x) = C1 exp
[
x

(
−λ2 −

∆
2

)]
+ C2 exp

[
x

(
−λ2 + ∆

2

)]
, (289)

con g(0) = 0 y g′(0) = 1, vemos que C2 = −C1 y C1 = −1/∆. Por tanto,

g(x) = e−λx/2

∆
(
e∆x/2 − e−∆x/2) . (290)

Sin embargo, si tomamos que
∆
2 = iµ, µ =

√
4η − λ2

2 , (291)

podemos reescribir a g(x) como

g(x) = e−λx/2

µ

(
eiµx − e−iµx

2i

)
= e−λx/2

(
sinµx
µ

)
. (292)

Esta forma para g(x) nos ahorra el problema de maniobrar cuando 4η < λ2 y µ resulta en un número imaginario.
Finalmente,

G(x) = H(x)e−λx/2
(

sinµx
µ

)
, µ =

√
4η − λ2

2 . (293)

A continuación se muestran gráficas del propagador para distintos valores de λ y η.

41



D.2.B
Busquemos una solución causal para el P.V.I. Sea K(x) = H(x)f(x). Observe que la ecuación diferencial puede
escribirse como

L(f)(x), (294)

donde L es el operador diferencial del ejercicio anterior, con λ = 2, η = 2. Entonces, ahora aplicando L sobre
K para hallar soluciones causales, tenemos

L(K)(x) = 1
2δ(x) + 2H(x) cosx. (295)

Por tanto, la solución K viene dada por

K(x) = (G(x) ∗ 1
2δ(x) + 2H(x) cosx)(x), (296)

con

G(x) = H(x)e−x
(

sinµx
µ

)
, µ =

√
4η − λ2

2 = 1. (297)
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Es decir,
G(x) = H(x)e−x sin x. (298)

Evaluando (296), vemos que

(G(x) ∗ 1
2δ(x) + 2H(x) cosx)(x) = 1

2G(x) + 2(G(x) ∗H(x) cosx)(x). (299)

Si definimos sk(x) = H(x)ekx, siguiendo el esquema empleado en (244),

G(x) = 1
2i (si−1(x)− s−i−1(x)) y H(x) cosx = 1

2 (si(x) + s−i(x)) , (300)

La convolución de la derecha en (299) se torna

2(G(x) ∗H(x) cosx)(x) = 1
2i (si−1 − s−i−1 ∗ si + s−i)(x) (301)

= 1
2i (si−1 ∗ si + s−i)(x)− 1

2i (s−i−1 ∗ si + s−i)(x), (302)

(303)

Expandiendo, obtenemos

1
2i

[
(si−1 ∗ si)(x) + (si−1 ∗ s−i)(x)− (s−i−1 ∗ si)(x)− (s−i−1 ∗ s−i)(x)

]
. (304)

Aplicando el resultado de (214),

(si−1 ∗ si)(x) = H(x)e
(i−1)x − eix

(i− 1)− i = H(x)eix(1− e−x), (305)

(si−1 ∗ s−i)(x) = H(x)e
(i−1)x − e−ix

(i− 1) + i
= H(x)e

ixe−x − e−ix

2i− 1 , (306)

−(s−i−1 ∗ si)(x) = H(x)e
−ixe−x − eix

2i+ 1 , (307)

−(s−i−1 ∗ s−i)(x) = H(x)e−ix(e−x − 1). (308)

Agrupando inteligentemente los términos,

1
2i

[
(si−1 ∗ si)(x)− (s−i−1 ∗ s−i)(x)

]
= 1

2i

[
H(x)eix(1− e−x)−H(x)e−ix(1− e−x)

]
(309)

= H(x)e
ix − e−ix

2i (1− e−x) (310)

= H(x)(1− e−x) sin x, (311)

y
1
2i

[
(si−1 ∗ s−i)(x)− (s−i−1 ∗ si)(x)

]
= 1

2i

[
H(x)e

ixe−x − e−ix

2i− 1 +H(x)e
−ixe−x − eix

2i+ 1

]
. (312)

Expandiendo,

−1
5 ·

H(x)
2i

[
(2i+ 1)(eixe−x − e−ix) + (2i− 1)(e−ixe−x − eix)

]
, (313)

−1
5 ·

H(x)
2i

[
(eix − e−ix) + e−x(eix − e−ix)− 2i(eix + e−ix) + 2ie−x(eix + e−ix)

]
, (314)

−1
5H(x)

[
sin x+ e−x sin x− 2 cosx+ 2e−x cosx

]
. (315)

Entonces, juntando (311) y (315)

2(G(x) ∗H(x) cosx)(x) = 2
5H(x)

(
cosx+ 2 sinx− e−x cosx− 3e−x sin x

)
, (316)
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y finalmente, sumando el término G(x)/2,

K(x) = 1
5H(x)

(
2 cosx+ 4 sinx− 2e−x cosx− 7

2e
−x sin x

)
. (317)

Este es un ejemplo clásico del oscilador armónico amortiguado y forzado. En vez de usar variación de parámetros
para hallar la solución particular, empleamos el propagador causal para hallar dicha solución. Note el leve efecto
transitorio para x ≈ 0, que es caracteŕıstico de sistemas similares.
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Transformada de Laplace

T.1
Basta con evaluar

L (δ) (z) =
∫ ∞
−∞

δ(x)e−zx dx =
〈
δ(x)

∣∣ e−zx〉 = 1. (318)

T.2
De forma similar, basta con evaluar

L (H) (z) =
∫ ∞
−∞

H(t)e−zt dt =
∫ ∞

0
e−zt dt = − ĺım

ε→∞

1
z
e−zt

∣∣∣ε
0

= 1
z

(
1− ĺım

ε→∞

1
ezε

)
. (319)

El ĺımite
ĺım
ε→∞

1
ezε

= ĺım
ε→∞

1
eσεeiωε

, z = σ + iω, (320)

converge a un valor finito (a 0, de hecho) únicamente si <(z) = σ > 0. Por tanto, la integral únicamente tiene
sentido para <(z) > 0, y tenemos

L (H) (z) = 1
z
, <(z) > 0, (321)

donde <(z) denota la parte real de z.

S.1
No es dif́ıcil hallar este resultado empleando las propiedades de la Transformada de Laplace. Primero, veamos
que como

L (tnH(t)) (z) =
〈
tnH(t)

∣∣ e−tz〉 , (322)

y además, 〈
f (n)
gen(t)

∣∣ e−tz〉 = (−1)n
〈
f(t)

∣∣ (−1)nzne−zt
〉

= zn
〈
f(t)

∣∣ e−zt〉 , (323)

entonces 〈
tnH(t)

∣∣ e−tz〉 = n!
zn+1

〈
δ(t)

∣∣ e−tz〉 = n!
zn+1 . (324)

Por tanto,
L (tnH(t)) (z) = n!

zn+1 . (325)

Es decir,

L
(
H(t) tn−1

(n− 1)!

)
(z) = 1

zn
. (326)

Para hallar el dominio de la transformada basta con observar la integral correspondiente.∫ ∞
0

e−tztn dt. (327)

Esta integral es conocida, y es sabido que converge para <(z) > 0. Entonces,

L
(
H(t) tn−1

(n− 1)!

)
(z) = 1

zn
, <(z) > 0. (328)
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La fórmula
L
(
H(t)eαt tn−1

(n− 1)!

)
(z) = 1

(z − α)n , <(z) > α (329)

sigue como consecuencia trivial de las propiedades de la Transformada de Laplace.

S.2.A
Separemos f(t) en sus componentes exponenciales como

f(t) = 1
2iH(t)eiωt − 1

2iH(t)e−iωt. (330)

Entonces,
L (f) (z) = 1

2iL
(
H(t)eiωt

)
(z)− 1

2iL
(
H(t)e−iωt

)
(z). (331)

Aplicando las propiedades de la Transformada de Laplace,

L (f) (z) = 1
2i

( 1
z − iω −

1
z + iω

)
= 1

2i
2iω

z2 + ω2 , (332)

y entonces
L (f) (z) = ω

z2 + ω2 . (333)

El dominio de la transformada puede obtenerse considerando que∣∣∣∣∫ ∞
0

e−zt sinωt dt
∣∣∣∣ ≤ ∫ ∞

0

∣∣e−zt sinωt
∣∣ dt ≤ ∫ ∞

0
e−zt dt. (334)

Es sabido que esta integral converge para <(z) > 0, y por tanto,

L (f) (z) = ω

z2 + ω2 , <(z) > 0. (335)

Recuerde, el dominio de la transformada es casi tan importante como la transformada en śı. Piense en Ma-
temáticas IV, cuando hallaba series de potencias: la serie es inútil sin su radio de convergencia.

S.2.B
Para el coseno, la situación es similar tanto para hallar la transformada como para su dominio. Sea u(t) =
H(t) cosωt. Entonces,

L (u) (t) = 1
2

( 1
z − iω + 1

z + iω

)
= z

z2 + ω2 , <(z) > 0. (336)

S.3.A
Consideremos

L
(
u′gen

)
(z) =

〈
u′gen(t)

∣∣ e−tz〉 . (337)

No es dif́ıcil ver que 〈
u′gen(t)

∣∣ e−tz〉 = −
〈
u(t)

∣∣ − ze−tz〉 = z
〈
u(t)

∣∣ e−tz〉 . (338)

Por ende, 〈
u′gen(t)

∣∣ e−tz〉 = z
〈
u(t)

∣∣ e−tz〉 , (339)

y entonces
L
(
u′gen

)
(z) = zL (u) (z). (340)
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S.3.B
Para mostrar esta propiedad, basta, veamos que como

L (u) (z) =
∫ ∞
−∞

u(t)e−zt dt, (341)

entonces
DzL (u) (z) = Dz

∫ ∞
−∞

u(t)e−zt dt =
∫ ∞
−∞

∂z

[
u(t)e−zt

]
dt, (342)

según la regla de Leibniz para derivación bajo el śımbolo integral. Por tanto,

L (u)′ (z) =
∫ ∞
−∞

u(t) · −te−zt dt = −L (tu(t)) (z), (343)

suponiendo que L (tu(t)) (z) existe. La fórmula

L (tnu(t)) (z) = (−1)nDn
zL (u) (z) (344)

resulta trivialmente de la aplicación sucesiva de (343). Formalmente puede aplicarse inducción, aunque esto se
deja al lector como ejercicio.

S.4.A
Para mostrar la propiedad, veamos que como

L (u(t− t0)) (z) =
∫ ∞
−∞

u(t− t0)e−zt dz, (345)

entonces bajo la sustitución x = t− t0, dx = dt la integral resulta∫ ∞
−∞

u(x)e−zx−zt0 dx = e−zt0
∫ ∞
−∞

u(x)e−zx dx. (346)

Por tanto,

L (u(t− t0)) (z) = e−zt0
∫ ∞
−∞

u(x)e−zx dx = e−zt0L (u) (z). (347)

S.4.B
Si

(u ∗ g)(t) =
∫ ∞
−∞

u(t− s)g(s) ds, (348)

entonces
L (u ∗ g) (z) =

∫ ∞
−∞

(∫ ∞
−∞

u(t− s)g(s) ds
)
e−zt dt. (349)

Suponiendo que la integral doble existe, entonces mediante el teorema de Fubini tenemos∫ ∞
−∞

(∫ ∞
−∞

u(t− s)g(s) ds
)
e−zt dt =

∫ ∞
−∞

∫ ∞
−∞

u(t− s)g(s)e−zt dt ds. (350)

Tomando la sustitución x = t− s, dx = dt, entonces∫ ∞
−∞

∫ ∞
−∞

u(t− s)g(s)e−zt dt ds =
∫ ∞
−∞

∫ ∞
−∞

u(x)g(s)e−zxe−zs dx ds. (351)
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Finalmente, y aplicando el teorema de Fubini una última vez,∫ ∞
−∞

∫ ∞
−∞

u(x)g(s)e−zxe−zs dx ds =
(∫ ∞
−∞

u(x)e−zx dx
)(∫ ∞

−∞
g(s)e−zs ds

)
; (352)

es decir,
L (u ∗ g) (z) = L (u) (z) · L (g) (z) = U(z) ·G(z). (353)

S.5
Siguiendo el mismo esquema que empleamos para el seno y el coseno, si reescribimos

f(t) = 1
2H(t)eωt − 1

2H(t)e−ωt, (354)

entonces obtenemos de forma similar que

L (f) (z) = 1
2

( 1
z − ω −

1
z + ω

)
= ω

z2 − ω2 . (355)

Para hallar el dominio, basta con considerar∫ ∞
0

sinhωt e−tz dt = 1
2

∫ ∞
0

eωte−zt dt− 1
2

∫ ∞
0

e−ωte−zt dt (356)

= 1
2

∫ ∞
0

e(ω−z)t dt− 1
2

∫ ∞
0

e−(ω+z)t dt. (357)

Para garantizar la convergencia de la integral, deben satisfacerse simultáneamente ω−<(z) < 0 y ω+<(z) > 0.
Es decir,

<(z) > ω y <(z) > −ω. (358)

De aqúı que <(z) > ω. Finalmente,

L (f) (z) = ω

z2 − ω2 , <(z) > ω. (359)

Para u, el cálculo es completamente análogo, pues

L (u) (z) = 1
2

( 1
z − ω + 1

z + ω

)
= z

z2 − ω2 . (360)

Además, el dominio es el mismo (¿puede decir por qué?). De manera que

L (u) (z) = z

z2 − ω2 , <(z) > ω. (361)

S.6
Para hallar a u, comencemos por tomar la transformada de Laplace a ambos lados.

L
(
u′gen(t)

)
(z) = L

(
δ′(t)

)
(z)− 2L (H(t− 2)) (z). (362)

Aplicando las propiedades de la transformada, obtenemos

zL (u) (z) = zL (δ) (z)− 2e−2zL (H) (z). (363)
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Sea L (u) (z) = U(z). Entonces, obtenemos una ecuación algebraica en z, pues

zU(z) = z − 2e−2z · 1
z
. (364)

Esta ecuación se puede reducir a

U(z) = 1− 2e−2z

z2 . (365)

Como
L (δ) (z) = 1, L (tH(t)) (z) = 1

z2 , (366)

entonces
U(z) = L (δ) (z)− 2e−2zL (tH(t)) (z) (367)

Y además, como L (f(t− t0)) (z) = e−zt0L (f) (z), entonces

U(z) = L (δ) (z)− L (2(t− 2)H(t− 2)) (z). (368)

Finalmente, de
U(z) = L (δ(t)− 2(t− 2)H(t− 2)) (z) (369)

obtenemos
u(t) = δ(t)− 2(t− 2)H(t− 2). (370)

S.7.A
No es dif́ıcil verificar que si

tφ(t) + φ′gen(t) = 0 (371)

entonces
L (tφ(t)) (z) + L

(
φ′gen(t)

)
(z) = 0 (372)

y por tanto, si Φ(z) = L (φ) (z),
zΦ(z)− Φ′(z) = 0. (373)

Note que esta es exactamente la misma ecuación, sólo que con el signo que acompaña a la función derivada
cambiado. Esta ecuación diferencial es separable, y su solución se obtiene fácilmente como

Φ(z) = Cez
2/2, C ∈ C. (374)

El hecho de que la constante pertenezca a C es solo una formalidad de haber resuelto la ecuación en el plano
complejo.

S.7.B
Normalmente, como es usual de problemas de valores iniciales, bastaŕıa solo con aplicar alguna condición de la
forma Φ(0) = ctte para determinar a C. Sin embargo, justamente no conocemos dicha constante, y es necesario
hallarla empleando la definición. Entonces, tomemos

Φ(z) = L
(
e−t

2/2
)

(z) =
∫ ∞
−∞

e−t
2/2e−zt dt. (375)

A pesar de que no sabemos el valor de la constante, realmente no es imprescindible efectuar la integral para z
arbitrario: basta con evaluarla para el z más sencillo de calcular. Escogiendo z = 0,

Φ(0) =
∫ ∞
−∞

e−t
2/2 dt. (376)
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El valor de esta integral es conocido, y es
√

2π. Sin embargo, su cálculo puede efectuarse sin mayor complicación
usando el truco de Fubini para la integral de e−x

2
y el cambio a coordenadas polares (Matemáticas V). Por

tanto,
Φ(z) =

√
2πez

2/2. (377)

Si se escoge en cambio el camino del sufrimiento y decide hallar la transformada mediante la integral, basta
con completar el cuadrado inteligentemente en el argumento de la exponencial como

t2

2 + zt = 1
2 (t+ z)2 − z2

2 . (378)

Entonces, la integral se reescribe como∫ ∞
−∞

e−t
2/2e−zt dt = ez

2/2
∫ ∞
−∞

e−(t+z)2/2 dt. (379)

Aunque la integral de la derecha parece depender de z, realmente es irrelevante pues la integración se lleva
acabo sobre todo R; la simple sustitución x = t+ z confirma esto, pues

ez
2/2
∫ ∞
−∞

e−(t+z)2/2 dt = ez
2/2
∫ ∞
−∞

e−x
2/2 dx. (380)

Ahora puede apreciarse que la integral de la derecha es exactamente la de (376). Por tanto,

Φ(z) =
√

2πez
2/2. (381)

S.8
Si reescribimos ∫ ∞

0
e−kt sinnt dt =

∫ ∞
−∞

e−ktH(t) sinnt dt, (382)

podemos reconocer de inmediato la integral como una transformada de Laplace. Entonces,∫ ∞
0

e−kt sinnt dt = n

k2 + n2 , k > 0. (383)

S.9
De forma similar, podemos reconocer de inmediato a la integral como una transformada de Laplace, pues∫ ∞

0
e−tt2 cos2 nt dt =

∫ ∞
−∞

e−tH(t)t2 cos2 nt dt = L
(
H(t)t2 cos2 nt

)
(1). (384)

Aqúı, la transformada
L
(
H(t)t2 cos2 nt

)
(z) (385)

puede hallarse tomando
cos2 nt = 1 + cos 2nt

2 . (386)

De esta manera, si definimos f(t) = H(t)t2 cosnt,

L (f) (z) = 1
2L
(
t2H(t)

)
(z) + 1

2L
(
t2H(t) cos 2nt

)
(z). (387)
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Paso a paso, la transformada de la izquierda se puede hallar mediante el resultado de (329),

1
2L
(
t2H(t)

)
(z) = 1

z3 , (388)

y la de la derecha mediante las propiedades apropiadas,

1
2L
(
t2H(t) cos 2nt

)
(z) = 1

2D
2L (H(t) cos 2nt) (z) (389)

= 1
2D

2
(

z

z2 + 4n2

)
. (390)

Efectuando la derivada segunda, obtenemos

1
2D

2
(

z

z2 + 4n2

)
= z(z2 − 12n2)

(z2 + 4n2)3 . (391)

Por tanto,

L (f) (z) = 1
z3 + z(z2 − 12n2)

(z2 + 4n2)3 , <(z) > 0. (392)

Evaluando para z = 1, según la integral,

L (f) (1) = 1 + 1− 12n2

(1 + 4n2)3 . (393)

Finalmente, ∫ ∞
0

e−tt2 cos2 nt dt = 1 + 1− 12n2

(1 + 4n2)3 . (394)

S.10
Aplicando el resultado de (135), vemos que

1
3δ
′(3x− 2) = 1

3δ
′
(

3
(
x− 2

3

))
= 1

27δ
′
(
x− 2

3

)
. (395)

De esta manera,

L
( 1

27δ
′
(
x− 2

3

))
(z) = e−2z/3

27 L
(
δ′
)

(z) = 1
27e

−2z/3z, z ∈ C. (396)
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S.11
Emplearemos la definición, pues el propósito de este ejercicio es justamente aclarar el tema. Tomemos

L
(
H(x− µ)eiνx

)
(z) =

∫ ∞
−∞

H(x− µ)eiνxe−zx dx (397)

Realmente, puede aplicarse primero la propiedad de multiplicación por exponencial o la de traslación en x.
Lo importante es entender que aplicar una primero tiene un efecto sobre la segunda. Consideremos por ahora
aplicar la propiedad de producto con exponencial:∫ ∞

−∞
H(x− µ)eiνxe−zx dx =

∫ ∞
−∞

H(x− µ)e−(z−iν)x dx = L (H(x− µ)) (z − iν). (398)

Por tanto, tomando la sustitución u = x− µ, obtenemos

e−µ(z−iν)
∫ ∞
−∞

H(u)e−(z−iν)u du = e−µ(z−iν)L (H) (z − iν). (399)

Note que en vez de obtener un término e−µz al aplicar la propiedad de traslación en x obtuvimos un e−µ(z−iν),
que corresponde a haber aplicado la propiedad de factor exponencial primero. Coloquialmente, al cambiar el
argumento de la transformada con el factor exponencial eiνx a z − iν, la exponencial que sale de la propiedad
de traslación debe llevar este nuevo argumento, en vez de z. Ahora, si hubiésemos tomado la sustitución
u = x− µ primero, tendŕıamos ∫ ∞

−∞
H(u)eiνueiνµe−zue−zµ du, (400)

es decir,

e−zµ
∫ ∞
−∞

H(u)eiν(u+µ)e−zu du = e−zµL
(
H(u)eiν(u+µ)) (z). (401)

Vemos que al aplicar primero la propiedad de traslación agregamos un término adicional a la exponencial, que
de hecho es constante y puede salir de la integral. Por tanto

e−µ(z−iν)
∫ ∞
−∞

H(u)eiνue−zu du = e−µ(z−iν)L
(
H(u)eiνu

)
(z) (402)

= e−µ(z−iν)L (H) (z − iν). (403)

De cualquier manera, el resultado es

L
(
H(x− µ)eiνx

)
(z) = e−µ(z−iν)

z − iν . (404)

D.1
Intentemos efectuar la integral empleando nuestro conocimiento sobre transformadas de Laplace. Primero,
veamos que ∫ ∞

λ

e−3t sin3 kt dt (405)

puede ser reescrita en términos de una transformada de Laplace, pues∫ ∞
λ

e−3t sin3 kt dt =
∫ ∞
−∞

e−3tH(t− λ) sin3 kt dt = L
(
H(t− λ) sin3 kt

)
(3). (406)

Trataremos entonces de hallar ∫ ∞
−∞

e−ztH(t− λ) sin3 kt dt (407)
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para luego evaluar en z = 3. Obviamente no sabemos la transformada de H(t) sin3 kt. Sin embargo, sabemos
que se puede reducir sin3 kt a una combinación lineal de senos y cosenos (una aplicación usual de la fórmula
de De Moivre en Matemáticas VI). En efecto,

sin3 x =
( 1

2i e
ix − 1

2i e
−ix
)3

(408)

= − 1
8i e

3ix + 3
8i e

ix − 3
8i e
−ix + 1

8i e
−3ix (409)

= 3
4 sin x− 1

4 sin 3x. (410)

Entonces,
sin3 kt = 3

4 sin kt− 1
4 sin 3kt. (411)

Ahora, podemos deshacernos de la traslación en la Heaviside: tomando la sustitución u = t− λ,∫ ∞
−∞

e−ztH(t− λ) sin3 kt dt = e−zλ
∫ ∞
−∞

e−zuH(u) sin3(ku+ kλ) du (412)

= e−zλL
(
H(u) sin3(ku+ kλ)

)
(z). (413)

Ahora śı podemos hallar la integral original en términos de transformadas de senos y cosenos, pues como

sin3(ku+ kλ) = 3
4 sin(ku+ kλ)− 1

4 sin(3ku+ 3kλ), (414)

cada seno puede separarse tranquilamente y lo que queda por hacer es mera carpinteŕıa. Veamos pues que, si
definimos

λc = cos kλ, λs = sin kλ, (415)
µc = cos 3kλ, µs = sin 3kλ, (416)

entonces 3
4 sin(ku+ kλ) = 3

4λc sin ku+ 3
4λs cos ku, (417)

y
1
4 sin(3ku+ 3kλ) = 1

4µc sin 3ku+ 1
4µs cos 3ku. (418)

Por tanto, si definimos (solo para ahorrar en escritura) fn(u) = H(u) sinnu, gn(u) = H(u) cosnu,

L
(
H(u) sin3(ku+ kλ)

)
(z) = 3

4λc L (fk) (z) + 3
4λs L (gk) (z)

− 1
4µc L (f3k) (z)− 1

4µs L (g3k) (z). (419)

Cada una de estas transformadas es conocida, y

L
(
H(u) sin3(ku+ kλ)

)
(z) = 3

4

(
λck

z2 + k2 + λsz

z2 + k2

)
− 3

4

(
µck

z2 + 9k2 + 1
3

µsz

z2 + 9k2

)
(420)

= 3
4

(
λck

z2 + k2 + λsz

z2 + k2 −
µck

z2 + 9k2 −
1
3

µsz

z2 + 9k2

)
. (421)

Por tanto,

e−zλL
(
H(u) sin3(ku+ kλ)

)
(z) = 3e−zλ

4

(
λck

z2 + k2 + λsz

z2 + k2 −
µck

z2 + 9k2 −
1
3

µsz

z2 + 9k2

)
, (422)

con <(z) > 0. Finalmente∫ ∞
λ

e−3t sin3 kt dt = 3e−3λ

4

(
λck

9 + k2 + 3λs
9 + k2 −

µck

9 + 9k2 −
1
3

3µs
9 + 9k2

)
, (423)

con 0 < λ <∞, k ∈ R.
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D.2
Hallar esta transformada es en realidad bastante sencillo con la mentalidad apropiada: como

1
1 + e−t

=
∞∑
n=0

(−1)ne−nt, con t > 0, (424)

entonces

f(t) = H(t) 1
1 + e−t

= H(t)
∞∑
n=0

(−1)ne−nt (425)

está perfectamente bien definida, y

L (f) (z) =
∞∑
n=0

(−1)nL
(
H(t)e−nt

)
(z) =

∞∑
n=0

(−1)n

z + n
, <(z) > 0. (426)

D.3
En efecto, a pesar de que la transformada de f no es inmediata, la de

ktf(t) = H(t) sin kt (427)

es conocida. Entonces, tomando la transformada de ambos miembros,

kL (tf(t)) (z) = k

z2 + k2 , (428)

es decir,
DzL (f) (z) = − 1

z2 + k2 . (429)

De aqúı, que
L (f) (z) = − 1

k
arctan

(
z

k

)
+ C (430)

Śı: es importante que no olvide la constante de integración. Esta puede hallarse calculando L (f) (0) como en
(376). Tomando

L (f) (0) =
∫ ∞

0

sin kt
kt

dt, (431)

reconocemos de inmediato a la integral de la derecha como la integral de la función sinc(x), que no posee
antiderivada en términos de funciones elementales. El valor de esta integral puede ser consultado, y es π/2k.
Sin embargo, el cálculo de dicha integral no es complicado. Con esto en mano,

C = π

2k , (432)

y finalmente
L (f) (z) = π

2k −
1
k

arctan
(
z

k

)
. (433)
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D.4.A
Consideremos u(t) = H(t)J0(t). La primera y segunda derivada de u vienen dadas por

u′gen(t) = δ(t) +H(t)J ′0(t) (434)

y
u′′gen(t) = δ′(t) +H(t)J ′′0 (t). (435)

Por tanto,
t2u′′gen(t) + tu′gen(t) + t2u(t) = t2δ′(t) + tδ(t) = 0, (436)

en virtud de (106). Entonces, u satisface la ecuación diferencial

t2u′′gen(t) + tu′gen(t) + t2u(t) = 0. (437)

Tomando la transformada de Laplace de ambos miembros, tenemos que

L
(
t2u′′gen(t)

)
(z) + L

(
tu′gen(t)

)
(z) + L

(
t2u(t)

)
(z) = 0, (438)

y entonces que
D2
[
z2L (u) (z)

]
−D

[
zL (u) (z)

]
+D2

[
L (u) (z)

]
= 0. (439)

Reescribiendo la ecuación anterior, vemos que

D2
[
(z2 + 1)L (u) (z)

]
= D

[
zL (u) (z)

]
; (440)

es decir, que
D
[
(z2 + 1)L (u) (z)

]
= zL (u) (z) + C1, C1 ∈ C. (441)

Sin embargo, como L (u) (0) = 1 y L (u)′ (0) = 0, entonces

2zL (u) (z) + (z2 + 1)L (u)′ (z) = zL (u) (z) + C1 para z → 0 (442)

se reduce a
C1 = 0, (443)

De manera que
2zL (u) (z) + (z2 + 1)L (u)′ (z) = zL (u) (z) (444)

y por tanto,
(z2 + 1)L (u)′ (z) = −zL (u) (z). (445)

Esta ecuación diferencial puede resolverse fácilmente tomando

U ′(z)
U(z) = D

[
ln(U(z))

]
= − z

z2 + 1 , U(z) = L (u) (z), (446)

pues entonces
ln(U(z)) = −1

2 ln(z2 + 1) + C2, (447)

y de aqúı, que
U(z) = C2√

1 + z2
. (448)

Finalmente, como L (u) (0) = U(0) = 1, C2 = 1 y

U(z) = 1√
1 + z2

. (449)
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D.4.B
Veamos que ∫ t

0
J0(s)J0(t− s) ds, t ≥ 0 (450)

es equivalente en definición a

H(t)
∫ t

0
J0(s)J0(t− s) ds, (451)

que no es más que
(u ∗ u)(t), (452)

según la convención del ejercicio anterior u(t) = H(t)J0(t). Tomando la transformada de Laplace de la convo-
lución, podemos observar que

L (u ∗ u) (z) = L (u) (z) · L (u) (z) =
(

1√
1 + z2

)2

= 1
1 + z2 . (453)

Inmediatamente reconocemos a esta expresión como la transformada de H(t) sin t. Por ende, tenemos que

L (u ∗ u) (z) = L (H(t) sin t) (z), (454)

y entonces que

H(t) sin t = (u ∗ u)(t) = H(t)
∫ t

0
J0(s)J0(t− s) ds; (455)

es decir,

sin t =
∫ t

0
J0(s)J0(t− s) ds, t ≥ 0. (456)

E.1.A
Si

u(x) = H(x+ L)eikx −H(x− L)eikx, (457)

entonces, empleando el resultado de (404),

L (u) (z) = eL(z−ik)

z − ik −
e−L(z−ik)

z − ik = eL(z−ik) − e−L(z−ik)

z − ik . (458)

E.1.B
Tomando z = iω,

L (u) (iω) = 1
i
· e

iL(ω−k) − e−iL(ω−k)

ω − k = 2 sin (L(ω − k))
ω − k . (459)

Tomando
σ = ω − π

L
, (460)

entonces
L (u) (iω) = 2L sin (σL)

σL
. (461)

E.1.C
En la página siguiente se muestran las gráficas.
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E.2.A
Recordando (329), se verifica trivialmente que

L (rj) (z) = Rj(z), (462)

pues

L

(
H(t)

Nj∑
k=1

cjke
αjt tk−1

(k − 1)!

)
(z) =

Nj∑
k=1

cjkL
(
H(t)eαjt tk−1

(k − 1)!

)
(z) (463)

=
Nj∑
k=1

cjk
(z − αj)k

, (464)

en virtud de (329).
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E.2.B
Escribiendo a 1 de forma inteligente, vemos que

etz

(z − αj)k
= eαjt e

tze−αjt

(z − αj)k
= eαjt e

(z−αj)t

(z − αj)k
. (465)

Entonces, empleando la serie de Laurent
etz

zk
=
∞∑
n=0

tnzn−k

n! , (466)

obtenemos una serie de Laurent análoga para (465) alrededor de αj

eαjt e
(z−αj)t

(z − αj)k
= eαjt

∞∑
n=0

tn(z − αj)n−k

n! . (467)

Véase que el coeficiente que acompaña al término

1
z − αj

, (468)

es decir, el residuo, es

eαjt tk−1

(k − 1)! . (469)

Para extraerlo basta con buscar el coeficiente del término con n− k = −1. Finalmente,

Res
(

etz

(z − αj)k
; αj

)
= eαjt tk−1

(k − 1)! . (470)

E.2.C
Como

Res
(

etz

(z − αj)k
; αj

)
= eαjt tk−1

(k − 1)! , (471)

entonces
Nj∑
k=1

cjkRes
(

etz

(z − αj)k
; αj

)
= Res

(
Nj∑
k=1

cjke
tz

(z − αj)k
; αj

)
=

Nj∑
k=1

cjke
αjt tk−1

(k − 1)! , (472)

es decir,

Res
(
etzRj(z); αj

)
=

Nj∑
k=1

cjke
αjt tk−1

(k − 1)! . (473)

Por tanto, se obtiene que

rj(t) = H(t)
Nj∑
k=1

cjke
αjt tk−1

(k − 1)! = H(t)Res
(
etzRj(z); αj

)
. (474)

Ahora, como etzRj(t), por su misma definición, no tiene singularidades en αi a menos que i = j, entonces

Res
(
etzRj(z); αj

)
= Res

(
etzR(z); αj

)
(475)

pues el residuo de cada término de la suma en R(z) da cero, a menos que sea el j-ésimo. Es claro que la parte

N0∑
k=0

ckz
k (476)
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de R(z) puede generarse con deltas y sus derivadas tomando

N0∑
k=0

ckδ
(k)(t), (477)

y en virtud de (475), la parte

p∑
j=1

Rj(z) =
N1∑
k=1

c1k
(z − α1)k +

N2∑
k=1

c2k
(z − α2)k + · · ·+

Np∑
k=1

cpk
(z − αp)k

(478)

puede ser generada con

H(t)
p∑
j=1

Res
(
etzRj(z); αj

)
= H(t)

p∑
j=1

Res
(
etzR(z); αj

)
. (479)

Por tanto, el resultado principal que se deseaba obtener es

r(t) =
N0∑
k=0

ckδ
(k)(t) +H(t)

p∑
j=1

Res
(
etzR(z); αj

)
. (480)

Una reescritura conveniente es la siguiente: en realidad,

Res
(
etzR(z); α

)
(481)

es cero, a menos que etzR(z) tenga alguna singularidad no removible en α ∈ C. Entonces, basta con sumar
sobre todas las singularidades posibles de etzR(z). Es decir, podemos sumar sobre todos los α ∈ C; los únicos
términos que no den cero serán aquellos que correspondan a singularidades no removibles de etzR(z), y nos
olvidamos de indexar las singularidades tomando

r(t) =
N0∑
k=0

ckδ
(k)(t) +H(t)

∑
α∈C

Res
(
etzR(z); α

)
. (482)
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Transformada Inversa de Laplace

S.1.A
Basta con tomar la transformada término a término. De aqúı, que

L (u) (z) = z + z

z2 + 1 −
1

z2 + 1 = z3 + 2z − 1
z2 + 1 . (483)

S.1.B
Véase que, tomando L (u) (z) = U(z),

etzU(z) = z3 + 2z − 1
z2 + 1 etz (484)

tiene singularidades no removibles en z = ±i. Dado que los polos son simples, pues

z3 + 2z − 1
z2 + 1 etz = z3 + 2z − 1

(z + i)(z − i)e
tz (485)

los residuos en z = ±i pueden ser calculados fácilmente mediante

Res (f ; c) = ĺım
z→c

(z − c)f(z). (486)

Evaluando el ĺımite para z = ±i, obtenemos que

Res
(
etzU(z); i

)
=
(1

2 −
1
2i

)
eit, Res

(
etzU(z); −i

)
=
(1

2 + 1
2i

)
e−it. (487)

Por tanto,
u(t) = H(t)

(1
2e

it + 1
2e
−it − 1

2i e
it + 1

2i e
−it
)

= H(t) cos t−H(t) sin t. (488)

Es claro que falta el término δ′(t), y que este resultado no coincide con el anterior.

S.1.C
Los resultados no coinciden porque hemos saltado por alto una observación crucial. Para hallar la fórmula que
emplea el residuo tomamos que cualquier función racional

R(z) = a0 + a1z + a2z
2 + · · ·+ anz

m

b0 + b1z + b2z2 + · · ·+ blzl
(489)

teńıa una descomposición de la forma

R(z) =
N0∑
k=0

ckz
k +

N1∑
k=1

c1k
(z − α1)k +

N2∑
k=1

c2k
(z − α2)k + · · ·+

Np∑
k=1

cpk
(z − αp)k

, (490)

con N1 + N2 + · · · + Np = l. Sin embargo, y esto pudo calcularse sin mayor complicación en E.2, la formula
del residuo

H(t)
∑
α∈C

Res
(
etzR(z); α

)
(491)
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corresponde únicamente a la función causal que genera la parte
N1∑
k=1

c1k
(z − α1)k +

N2∑
k=1

c2k
(z − α2)k + · · ·+

Np∑
k=1

cpk
(z − αp)k

(492)

de la descomposición. Es decir, con esto no pueden calcularse las funciones que corresponden a
N0∑
k=0

ckz
k (493)

al aplicar la transformada. En términos más elementales, esto nos lleva a una conclusión sencilla. Los términos
ckz

k de la descomposición aparecen cuando m ≥ l; es decir, cuando el grado del numerador es mayor que
el del denominador. Entonces, para usar la fórmula del residuo sin perder la cabeza, es conveniente aplicar
división larga hasta lograr que el grado del numerador del cociente resultante sea menor que el
del denominador, a manera de calcular por separado las distintas partes: por un lado, las funciones que
corresponden a

N0∑
k=0

ckz
k (494)

se hallan sin mucha dificultad reconociendo los términos como la transfomada de derivadas de la delta, y por
el otro lado calculando las que corresponden a

N1∑
k=1

c1k
(z − α1)k +

N2∑
k=1

c2k
(z − α2)k + · · ·+

Np∑
k=1

cpk
(z − αp)k

(495)

con la fórmula del residuo.

S.2
Sea G(z) = L (g) (z). Tomando la transformada a ambos lados,

L
(
g′′gen

)
(z) = L (δ) (z) + L (H) (z), (496)

obtenemos
z2G(z) = 1 + 1

z
, (497)

y por tanto,
G(z) = z + 1

z3 . (498)

Hallar a g por tablas seŕıa muy sencillo. Vayamos por el camino largo: como el numerador de G(z) es menor que
el denominador, podemos aplicar la fórmula del residuo sin contemplar términos adicionales. Preparándonos
para aplicar la fórmula, vemos que G(z) tiene un solo polo de orden 3 en z = 0. Entonces, para no entrar en
complicadas fórmulas de derivadas, basta con hallar la expansión de Laurent alrededor de z = 0 y extraer el
residuo. Como

etzG(z) =
( 1
z2 + 1

z3

)
etz =

( 1
z2 + 1

z3

) ∞∑
n=0

tnzn

n! (499)

=
∞∑
n=0

tnzn−2

n! +
∞∑
k=0

tkzk−3

k! . (500)

De aqúı, que el término con z−1 viene dado por (
t+ 1

2 t
2
) 1
z
, (501)

y entonces
Res

(
etzG(z); 0

)
= t+ 1

2 t
2. (502)

Finalmente,
g(t) = H(t)t+ 1

2H(t)t2. (503)
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S.3
Note que, de entrada, la ecuación puede reescribirse como

y′′ + 1
k2 y = 0. (504)

Esta es la ampliamente conocida ecuación del oscilador armónico; a estas alturas, ya debeŕıa tener una idea de
cómo ha de ser la solución. Empecemos por suponer una solución causal. Sea u(t) = H(t)y(t) y U(z) = L (u) (z).
Entonces, como

u′gen(t) = H(t)y′(t) (505)

y
u′′gen(t) = − 2

k2 δ(t) +H(t)y′′(t), (506)

entonces
u′′gen(t) + 1

k2 u(t) = − 2
k2 δ(t). (507)

Tomando la transformada de Laplace a ambos miembros, vemos que

L
(
u′′gen

)
(z) + 1

k2L (u) (z) = − 2
k2L (δ) (z) (508)

y entonces, la ecuación pasa a ser
z2U(z) + 1

k2U(z) = − 2
k2 , (509)

o bien
k2z2U(z) + U(z) = −2. (510)

De aqúı, que

U(z) = −2
k2z2 + 1 = −2

(kz + i)(kz − i) = 1
i

( 1
kz + i

− 1
kz − i

)
(511)

= 1
ik

(
1

z + i/k
− 1
z − i/k

)
. (512)

De aqúı podemos conseguir directamente a u(t) mediante transformadas de tabla como

u(t) = 1
ik

(
H(t)e−it/k −H(t)eit/k

)
= − 2

k
H(t) sin(t/k). (513)

S.4
Intentemos hallar una solución causal al problema. Supongamos que u(x) = H(x)y(x). Entonces, como

u′gen(x) = H(x)y′(x), (514)

pues y(0) = 0, tenemos que
xu′gen(x) + u(x) = H(x)x sin x. (515)

Note que
(xu(x))′gen = xu′gen(x) + u(x). (516)

Esto permite reducir el problema considerablemente pues ahora

(xu(x))′gen = H(x)x sin x. (517)

Tomando la transformada de Laplace de ambos miembros,

L
(
(xu(x))′gen

)
(z) = L (H(x)x sin x) (z), (518)
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y
− zD

[
L (u) (z)

]
= −D

[
L (H(x) sin x) (z)

]
. (519)

Si definimos U(z) = L (u) (z), entonces
− zU ′(z) = 2z

(z2 + 1)2 . (520)

De aqúı, que
U ′(z) = − 2

(z2 + 1)2 . (521)

En este punto, hay dos caminos a seguir: el primero es integrar en z para hallar U(z) y luego hallar u(x),
mientras que el segundo es aplicar directamente el método de los residuos a −U ′(z) para hallar xu(x), y luego
despejar, pues L (xu(x)) (z) = −U ′(z). Seguiremos ambos, y luego compararemos los resultados. Integrar para
hallar a U(z) no es complicado. Tomando la sustitución z = tan β vemos que

− dU = 2
(z2 + 1)2 dz = 2

(tan2 β + 1)2 sec2 β dβ; (522)

Es decir,
− dU = 2 cos2 β dβ. (523)

De aqúı, que
− dU = (1 + cos 2β) dβ, (524)

y por tanto,
U(z) = − arctan z − z

z2 + 1 + C. (525)

Conocemos cada una de las funciones que generan a estas transformadas, incluso la de la arcotangente, gracias
a (433). Entonces,

u(x) = H(x)
( sin x

x
− cosx

)
+ Cδ(x). (526)

Note que aqúı hemos absorbido el término π/2 de la transformada de sinx/x en la constante arbitraria C.
Finalmente, para obtener la solución deseada, debemos hallar el valor de C. Esto se consigue sustituyendo a u
en (515) de forma que si

xu′gen(x) = xδ(x)
( sin x

x
− cosx

)
+ xH(x)

(
x cosx− sin x

x2 + sin x
)

+ xCδ′(x) (527)

= H(x)
(

cosx− sin x
x

+ x sin x
)
− Cδ(x), (528)

entonces

xu′gen(x) + u(x) = H(x)
(

cosx− sin x
x

+ x sin x
)
− Cδ(x) +H(x)

( sin x
x
− cosx

)
+ Cδ(x) (529)

= H(x)x sin x. (530)

Vemos que la ecuación se satisface independientemente del valor de C. Por tanto, podemos tomar libremente
C = 0, y

u(x) = H(x)
( sin x

x
− cosx

)
. (531)

Ahora, retrocedamos a
− U ′(z) = 2

(z2 + 1)2 . (532)

Procederemos a hallar xu(x) usando el método de los residuos. El denominador de la expresión puede reescri-
birse para obtener

− U ′(z) = 2
(z − i)2(z + i)2 . (533)

De aqúı, es claro que U(z) tiene dos polos de segundo orden en z = ±i. En vez de intentar aplicar alguna
fórmula para hallar el residuo de

2exz

(z − i)2(z + i)2 (534)
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en polos de segundo orden, confiaremos en nuestras habilidades para encontrar la expansión de Laurent alre-
dedor de z = ±i. Comencemos por tomar

µ = z + i, µ− 2i = z − i. (535)

Entonces, si R(z) = −U ′(z),

exzR(z) = 2e−ixexµ

µ2 · 1
(2i− µ)2 = −e

−ixexµ

2µ2 · 1
(1− µ/2i)2 . (536)

Sin embargo, como

Dµ

(
1

1− µ/2i

)
= 1

2i
1

(1− µ/2i)2 , (537)

tenemos que

exzR(z) = − ie
−ixexµ

µ2 Dµ

(
1

1− µ/2i

)
. (538)

Como hallar la expansión de Laurent alrededor de µ = 0 es equivalente a hallar la expansión alrededor de
z = −i, tenemos que

exzR(z) = −ie−ix
(
∞∑
n=0

xnµn−2

n!

)
·

(
∞∑
k=1

kµk−1

2kik

)
. (539)

Hallando los primeros términos de cada serie,

− ie−ix
(

1
µ2 + x

µ
+ x2

2 + · · ·
)
·
(

1
2i −

µ

2 −
3µ2

8i · · ·
)
. (540)

De aqúı, vemos que el término en µ−1 resulta

−ie−ix

µ

(
x

2i −
1
2

)
. (541)

Es decir, el término en (z + i)−1 de la expansión de Laurent de (534) alrededor de z = −i es

−ie−ix

z + i

(
x

2i −
1
2

)
. (542)

Por lo tanto,

Res (exzR(z); −i) = −e
−ix

2 (−i+ x) . (543)

Mediante un cálculo completamente análogo para z = i, obtenemos que

Res (exzR(z); i) = −e
−ix

2 (i+ x) . (544)

Entonces,

xu(x) = H(x)
∑
α∈C

Res (exzR(z); α) (545)

= H(x)
[
−e
−ix

2 (−i+ x)− e−ix

2 (i+ x)
]

(546)

= H(x)(sin x− x cosx). (547)

Finalmente,
u(x) = H(x)

( sin x
x
− cosx

)
, (548)

tal y como obtuvimos integrando y tomando la constante arbitraria como nula. Esto sirve para ilustrar que hay
varios caminos para obtener la solución deseada; no necesariamente teńıamos que integrar. Si la integral no
viene a la mente, hallar los residuos directamente era un posible camino. Si no desea arriesgarse equivocándose
al manipular la expresión para extraer el residuo, integre y utilice las transformadas conocidas, de ser necesario.
Ejercite su habilidad de hallar caminos alternativos al resolver problemas; ésta le será útil en el examen y en
su carrera profesional.
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S.5
Podemos hallar a u tomando la transformada de Laplace de ambos miembros y aplicando las propiedades:

L
(
u′′gen

)
(z) = L (H(t− π)) (z) + 2L

(
δ′′
)

(z) + 4L
(
δ′(2− t)

)
(z). (549)

Si tomamos U(z) = L (u) (z), entonces obtenemos

z2U(z) = e−πz

z
+ 2z2 − 4ze−2z, (550)

recordando que δ′(−s) = −δ′(s). De aqúı, que

U(z) = e−πz

z3 + 2− 4e−2z

z
. (551)

Aplicando los teoremas operacionales, podemos hallar a u como

u(t) = 1
2H(t− π)(t− π)2 + 2δ(t)− 4H(t− 2). (552)

Este es un ejercicio que bien puede lograrse en menos de cinco minutos, teniendo en claro las propiedades
fundamentales de la delta de Dirac y la Transformada de Laplace.

S.6
De forma similar, la estrategia será usar la transformada de Laplace para convertir la ecuación diferencial en
una ecuación algebraica. Sea F (z) = L (f) (z). Tomando la transformada de ambos miembros, tenemos

L
(
f ′′gen

)
(z) = L

(
H(t)te−2t) (z) + L

(
H(t)t2e−4t) (z) + L (δ) (z), (553)

z2F (z) = 1
(z + 2)2 + 2

(z + 4)3 + 1 (554)

en virtud de (329). De aqúı, que

F (z) = 1
z2(z + 2)2 + 2

z2(z + 4)3 + 1
z2 . (555)

En este punto hay dos maneras de proceder: la primera, tomar

F (z) = 324 + 500z + 317z2 + 101z3 + 16z4 + z5

z2(2 + z)2(4 + z)3 (556)

y encomendar a Jesucristo la ardua tarea de hallar los residuos en z = 0, z = −2 y z = −4. La segunda, es ir
término por término. Si pensamos en funciones R1, R2, y R3 tal que

R1(z) = 1
z2(z + 2)2 , R2(z) = 2

z2(z + 4)3 , R3(z) = 1
z2 , (557)

entonces podemos hallar funciones r1, r2 y r3, cada una por separado, que generen a R1, R2, R3, respectiva-
mente. Esto es much́ısimo más fácil que el mecánico procedimiento de juntar todo en una sola función racional
y hallar los residuos. Comencemos por hallar r1(t).

Hallando r1(t): Tal y como hemos hecho en ejercicios anteriores, buscaremos los residuos de

etzR1(z) = etz

z2(z + 2)2 . (558)
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Es claro que etzR1(z) tiene polos de orden 2 en z = 0 y z = −2. Por tanto, y una vez más evadiendo
las fórmulas para residuos, hallaremos las series de Laurent de etzR1(z) alrededor de z = 0 y z = −2
para encontrar los residuos. Comparando con (536), vemos que

etz

z2(z + 2)2 = − e
tz

2z2D

(
1

1− (−z/2)

)
. (559)

Expandiendo alrededor de z = 0,

etzR1(z) = −1
2

(
1
z2 + t

z
+ t2

2 + · · ·
)
·
(
−1

2 + z

2 −
3z2

8 + · · ·
)
, (560)

y observamos entonces que el término en z−1 resulta

− 1
2 ·

1
z

(1
2 −

t

2

)
. (561)

Por tanto,
Res

(
etzR1(z); 0

)
= 1

4(t− 1). (562)

Ahora, hallemos el residuo en z = −2. Tomando µ = z + 2,

etzR1(z) = e−2t eµt

µ2(µ− 2)2 . (563)

Vemos que con la sustitución, la expresión es exactamente idéntica, salvo por el factor e−2t y el signo
(−). Por ende, expandiendo alrededor de µ = 0, que es lo mismo que z = −2, llegamos a directamente
al resultado, muy similar salvo por el signo menos que desaparece,

etzR1(z) = e−2t

2

(
1
µ2 + t

µ
+ t2

2 + · · ·
)
·
(

1
2 + µ

2 + 3µ2

8 + · · ·
)
, (564)

y de aqúı que

Res
(
etzR1(z); −2

)
= e−2t

4 (t+ 1). (565)

Entonces,
r1(t) = 1

4H(t)(t− 1) + 1
4H(t)e−2t(t+ 1). (566)

Hallando r2(t): Para
R2(z) = 2

z2(z + 4)3 (567)

la situación es similar, solo que ahora hay un polo de orden 3 en z = −4. Sin embargo, ésto no hará al
cálculo más complicado. Hallemos el residuo en z = 0. Como

D2
(

1
1− (−z/4)

)
= 8

(z + 4)3 , (568)

entonces
etzR2(z) = 2etz

z2(z + 4)3 = etz

4z2D
2
(

1
1− (−z/4)

)
. (569)

Expandiendo alrededor de z = 0,

etzR2(z) = 1
4

(
1
z2 + t

z
+ t2

2 + · · ·
)
·
(

1
8 −

3z
32 + 3z2

64 + · · ·
)
. (570)

De aqúı, y en forma completamente análoga a los casos anteriores, extraemos el residuo del término en
z−1 y

Res
(
etzR2(z); 0

)
= 1

128(4t− 3). (571)
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Para z = −4, tomemos la sustitución s = z + 4. De esta manera

etzR2(z) = e−4t 2est

s3(4− s)2 . (572)

Ahora, la expansión alrededor de s = 0 (es decir, z = −4), resulta en

etzR2(z) = e−4t e
st

2s3D

(
1

1− s/4

)
(573)

= e−4t

2

(
1
s3 + t

s2 + t2

2s + t3

3 + · · ·
)
·
(

1
4 + s

8 + 3s2

64 + · · ·
)

(574)

El término en s−1 es entonces
1
s
· e
−4t

2

(
3
64 + t

8 + t2

8

)
, (575)

y por tanto,

Res
(
etzR2(z); −4

)
= e−4t

128
(
3 + 8t+ 8t2

)
. (576)

Finalmente,
r2(t) = 1

128H(t)(4t− 3) + 1
128H(t)e−4t(3 + 8t+ 8t2). (577)

Hallando r3(t): r3(t) se obtiene trivialmente de los teoremas operacionales de la transformada, pues

L (H(t)t) (z) = 1
z2 . (578)

Entonces,
r3(t) = H(t)t. (579)

Finalmente, juntando todos los resultados anteriores,

f(t) = r1(t) + r2(t) + r3(t). (580)

Es decir,

f(t) = 1
4H(t)(t− 1) + 1

4H(t)e−2t(t+ 1) + 1
128H(t)(4t− 3)

+ 1
128H(t)e−4t(3 + 8t+ 8t2) +H(t)t. (581)

S.7
Sea U(z) = L (u) (z). Tomando la transformada de Laplace podemos reescribir la ecuación original a una más
sencilla en el dominio z, pues

L (u(t+ α)) (z) + L (u) (z) = L (δ(t+ α)) (z) (582)

resulta en
U(z)eαz + U(z) = eαz. (583)

De aqúı, que
U(z) = eαz

eαz + 1 . (584)
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Pero como
eαz

eαz + 1 = 1
1 + e−αz

=
∞∑
n=0

(−1)ne−nαz, <(z) > 0, (585)

entonces

U(z) =
∞∑
n=0

(−1)ne−nαz, <(z) > 0, (586)

y u(t) puede obtenerse directamente observando que

L (δ(t− nα)) (z) = e−nαz. (587)

Finalmente,

u(t) =
∞∑
n=0

(−1)nδ(t− nα). (588)

S.8
Efectuar ésta convolución no seŕıa muy complicado empleando las propiedades de la convolución, como en el
caso de (196). Sin embargo, aqúı procederemos con la transformada de Laplace. Observe que como

L (H) (z) = 1
z
, (589)

entonces
L (H ∗H) (z) =

(1
z

)2
= 1
z2 . (590)

Aqúı hemos tomado una convolución. Si repetimos esto n veces, entonces es fácil ver que

L (H ∗H ∗ · · · ∗H) (z) =
(1
z

)n+1
= 1
zn+1 . (591)

Finalmente, y en virtud de (329),
(H ∗H ∗ · · · ∗H)(t) = H(t) t

n

n! , (592)

donde el número de convoluciones es n.

S.9.A
Sean G(z) = L (g) (z) y U(z) = L (u) (z). Para resolver la ecuación usaremos las propiedades de la transformada
de Laplace: tomando la transformada de ambos miembros, obtenemos

G(z)U(z) + λU(z) = 0; (593)

es decir,
U(z)(G(z) + λ) = 0. (594)

En particular, si u es conocida y su transformada no es idénticamente nula (U(z) = 0, ∀z ∈ C), entonces la
ecuación anterior únicamente se satisface si

G(z) = −λ, (595)

que a su vez implica
g(t) = −λδ(t). (596)
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S.9.B
Este caso es ligeramente diferente, pero la estrategia es la misma: tomando la transformada de ambos miembros
de la ecuación, obtenemos

G(z)U(z) + λU(z) = βG(z), (597)

de donde
G(z) = λU(z)

β − U(z) = λ

βU(z)−1 − 1 . (598)

Ahora, como
U(z) = 1

z2 + 1 , (599)

entonces
G(z) = λ

βz2 + β − 1 = λ

β

1
z2 + 1− β−1 . (600)

En este punto, no puede dejarse llevar por el pensamiento mecánico de intentar hallar los residuos de etzG(z);
hay una forma más sencilla. En particular,

G(z) = λ

β

1
z2 + 1− β−1 = λ

β
√

1− β−1

√
1− β−1

z2 + (1− β−1) . (601)

La función racional √
1− β−1

z2 + (1− β−1) (602)

puede reconocerse de inmediato como la transformada de Laplace de

H(t) sin
(√

1− β−1t
)
. (603)

Por tanto, y sin tener que hallar residuo alguno,

g(t) = λ

β
√

1− β−1
H(t) sin

(√
1− β−1t

)
. (604)

Una gráfica para λ = 1, β = 2 se muestra a continuación.
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S.10
Podemos hallar a u a través del método de los residuos sin mayor complicación. Antes que nada, veamos que

z4 − 2z2 + 1
z4 + 2z2 + 1 = 1− 4z2

z4 + 2z2 + 1 . (605)

Entonces,

L (u) (z) = 1− 4z2

z4 + 2z2 + 1 . (606)

Ahora śı podemos aplicar el método de los residuos; propiamente, (482). Sean

R1(z) = 1, R2(z) = 4z2

z4 + 2z2 + 1 . (607)

Hallemos las funciones r1(t), r2(t) que generan a éstas por separado:

r1(t): Se obtiene trivialmente como r1(t) = δ(t).

r2(t): Para hallar a r2(t) comencemos por factorizar el denominador. No es dif́ıcil notar que

z4 + 2z2 + 1 = (z2 + 1)2 = (z + i)2(z − i)2. (608)

Entonces,

R2(z) = 4z2

(z + i)2(z − i)2 . (609)

Podemos ver que R2 tiene polos de orden 2 en z = ±i. Procederemos hallando las expansiones de
Laurent alrededor de las singularidades para extraer los residuos de etzR2(z). Sea µ = z + i. Entonces

etzR2(z) = 4e−it e
µt

µ2
(µ− i)2

(µ− 2i)2 = e−it
eµt

µ2
(−1 + µ/i)2

(1− µ/2i)2 (610)

Recordando que

Dµ

(
1

1− µ/2i

)
= 1

2i
1

(1− µ/2i)2 , (611)

tenemos
etzR2(z) = 2ie−it e

µt

µ2 (−1 + µ/i)2Dµ

(
1

1− µ/2i

)
. (612)

Paso a paso, y expandiendo alrededor de µ = 0, como

eµt

µ2 = 1
µ2 + t

µ
+ t2

2 + µt3

3 + · · · , (613)

Dµ

(
1

1− µ/2i

)
= 1

2i −
µ

2 −
3µ2

8i + µ3

4 + · · · , (614)

(
µ

i
− 1
)2

= 1 + 2iµ− µ2, (615)

entonces, multiplicando los términos uno a uno y luego agrupando en µ−1, vemos que el término en
µ−1 resulta

1
µ

2ie−it
(1

2 + t

2i

)
= 1
µ
e−it (i+ t) . (616)

Por ende,
Res

(
etzR2(z); −i

)
= e−it(i+ t). (617)

Ahora, hallemos el residuo en z = i. Tomemos s = z − i, de forma que

etzR2(z) = 4eit e
st

s2
(s+ i)2

(s+ 2i)2 = eit
est

s2
(1 + s/i)2

(1 + s/2i)2 . (618)
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De manera completamente análoga a la anterior, expandiendo alrededor de s = 0, encontramos que el
término en s−1 de la expansión de Laurent es

1
s
eit(−i+ t). (619)

Por tanto,
Res

(
etzR2(z); i

)
= eit(−i+ t). (620)

Juntando los resultados, obtenemos entonces

r2(t) = H(t)
[
eit(−i+ t) + e−it(i+ t)

]
(621)

= H(t) (2 sin t+ 2t cos t) . (622)

Finalmente, juntando r1(t) y r2(t),

u(t) = δ(t)−H(t) (2 sin t+ 2t cos t) . (623)

S.11
Intentemos hallar una solución causal al problema. Sea u(t) = H(t)y(t). Como

u′gen(t) = −δ(t) +H(t)y′(t), (624)
u′′gen(t) = −δ′(t) +H(t)y′′(t), (625)
u′′′gen(t) = −δ′′(t) + δ(t) +H(t)y′′′(t), (626)

entonces
u′′′gen(t) + u(t) = −δ′′(t) + δ(t) +H(t)t. (627)

Tomando la transformada de Laplace de ambos miembros,

L
(
u′′′gen

)
(z) + L (u) (z) = −L

(
δ′′
)

(z) + L (δ) (z)L (H(t)t) (z). (628)

Cada una de las transformadas es sencilla de calcular, y obtenemos

z3U(z) + U(z) = −z2 + 1 + 1
z2 . (629)

De aqúı, que

U(z) = 1− z2

z3 + 1 + 1
z2(z3 + 1) . (630)

Nuevamente, conviene emplear el esquema de calcular las cosas por separado. Sean

R1(z) = 1− z2

z3 + 1 , R2(z) = 1
z2(z3 + 1) , (631)

y r1, r2 tales que
L (r1) (z) = R1(z), L (r2) (z) = R2(z). (632)

Hallemos r1, r2 para luego juntarlas y obtener a u(t).

r1(t): no es dif́ıcil ver que los ceros de z3 + 1 ocurren en

z = −e2πik/3, k = 0, 1, 2. (633)

Por tanto,
R1(z) = (1 + z)(1− z)

(z + 1)(z + e2πi/3)(z + e4πi/3)
= 1− z

(z + e2πi/3)(z + e4πi/3)
. (634)
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Como los polos son simples, el cálculo se simplifica much́ısimo. Empleando el método de su preferencia,
puede encontrar directamente que

Res
(
etzR1(z); −e2πi/3) = − 1 + e2πi/3

1 + 2e2πi/3 exp
(
t

2 − i
t
√

3
2

)
, (635)

Res
(
etzR1(z); −e4πi/3) = − 1− eπi/3

1− 2eπi/3
exp
(
t

2 + i
t
√

3
2

)
. (636)

De esta manera, y a pesar de que el resultado no es compacto,

r1(t) = H(t)
[
− 1 + e2πi/3

1 + 2e2πi/3 exp
(
t

2 − i
t
√

3
2

)
− 1− eπi/3

1− 2eπi/3
exp
(
t

2 + i
t
√

3
2

)]
. (637)

r2(t): con
R2(z) = 1

z2(z3 + 1) (638)

el procedimiento es similar, solo que ahora debemos tomar en cuenta todos los ceros de z3 + 1 y la
nueva singularidad en z = 0. De nuevo, como los polos son simples, podemos hallar los residuos en
z = −e2πik/3, k = 0, 1, 2, directamente como

Res
(
etzR2(z); −1

)
= 1

3e
−t, (639)

Res
(
etzR2(z); −e2πi/3) = 1

3e
−2πi/3 exp

(
t

2 − i
t
√

3
2

)
, (640)

Res
(
etzR2(z); −e2πi/3) = −1

3e
−πi/3 exp

(
t

2 + i
t
√

3
2

)
. (641)

EL residuo en z = 0 es bastante fácil de hallar también, pues

etzR2(z) = etz

z2
1

1− (−z3) . (642)

Expandiendo etzR2(z) alrededor de z = 0 obtenemos que como

ezt

z2 = 1
z2 + t

z
+ t2

2 + zt3

3 + · · · , (643)

1
1− (−z3) = 1− z3 + z6 − z9 + · · · , (644)

entonces el residuo es
Res

(
etzR2(z); 0

)
= t. (645)

Por tanto,

r2(t) = H(t)
[

1
3e
−t + 1

3e
−2πi/3 exp

(
t

2 − i
t
√

3
2

)
− 1

3e
−πi/3 exp

(
t

2 + i
t
√

3
2

)
+ t

]
(646)

Finalmente, juntando r1 y r2,

u(t) = H(t)
{
t+ 1

3e
−t +

[
1
3e
−2πi/3 − 1 + e2πi/3

1 + 2e2πi/3

]
exp
(
t

2 − i
t
√

3
2

)
+
[
−1

3e
−πi/3 − 1− eπi/3

1− 2eπi/3

]
exp
(
t

2 + i
t
√

3
2

)}
. (647)
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El ejercicio bien podŕıa terminar aqúı. Pero, y contra toda intuición, resulta que

1
3e
−2πi/3 − 1 + e2πi/3

1 + 2e2πi/3 = −2
3 , y − 1

3e
−πi/3 − 1− eπi/3

1− 2eπi/3
= −2

3 . (648)

Entonces,

u(t) = H(t)
{
t+ 1

3e
−t − 2

3e
t/2
[

exp
(
i
t
√

3
2

)
+ exp

(
−i t
√

3
2

)]}
(649)

= H(t)
[
t+ 1

3e
−t − 4

3e
t/2 cos

(
t
√

3
2

)]
. (650)

D.1
Intentemos hallar una solución causal al problema. Sea u(t) = H(t)y(t). Como

u′gen(t) = H(t)y′(t), (651)

u′′gen(t) = 1
2δ(t) +H(t)y′′(t), (652)

u′′′gen(t) = 1
2δ
′(t) +H(t)y′′′(t), (653)

entonces la ecuación causal es
tu′′′gen(t) + 3u′′gen(t)− tu(t) = δ(t). (654)

Ahora, tomando la transformada de Laplace de ambos miembros, tenemos

L
(
tu′′′gen(t)

)
(z) + 3L

(
u′′gen

)
(z)− L (tu(t)) (z) = L (δ) (z), (655)

de donde
−D

[
z3U(z)

]
+ 3z2U(z) +D (U(z)) = 1; (656)

es decir,
U ′(z)− z3U ′(z) = 1. (657)

De aqúı que U satisface
U ′(z) = 1

1− z3 . (658)

Nuestra opinión es que, en este punto, es claro que integrar no es una opción viable (al menos durante un parcial,
por ejemplo). En vez de seguir el camino del sufrimiento, una vez más delegaremos el trabajo pesado a las
propiedades de la transformada. Hallaremos a tu(t) mediante los residuos de −etzU ′(z), y con ella obtendremos
a u(t). Sea R(z) = −U ′(z). Entonces,

R(z) = 1
z3 − 1 . (659)

Esta función racional tiene polos simples en las (tres) ráıces de la unidad,

z = e2πik/3, k = 0, 1, 2. (660)

Estos residuos son fáciles de calcular. Ahora, es claro que conseguir a u no será algo dif́ıcil. Lo dif́ıcil del ejercicio
es exorcizar el impulso de pensar mecánicamente. Los tres residuos de R en las ráıces de la unidad resultan,

Res
(
etzR(z); 1

)
= 1

3e
t, (661)

Res
(
etzR(z); e2πi/3) = −1

3e
−πi/3 exp

(
− t2 + i

t
√

3
2

)
, (662)

Res
(
etzR(z); e4πi/3) = 1

3e
−2πi/3 exp

(
− t2 − i

t
√

3
2

)
. (663)
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Entonces,

tu(t) = 1
3H(t)

[
et + e−2πi/3 exp

(
− t2 − i

t
√

3
2

)
− e−πi/3 exp

(
− t2 + i

t
√

3
2

)]
, (664)

y finalmente

u(t) = 1
3tH(t)

[
et + e−2πi/3 exp

(
− t2 − i

t
√

3
2

)
− e−πi/3 exp

(
− t2 + i

t
√

3
2

)]
. (665)

A propósito, aún si llegase a integrar (658), obtendŕıa

U(z) = 1√
3

arctan
(

1 + 2z√
3

)
− 1

3 ln(1− z) + 1
6 ln(1 + z + z2) + C. (666)

No hace falta indicar por qué hallar a u(t) de esta expresión es innecesariamente complicado.

D.2
Encontremos una solución causal para el P.V.I. Sea u(t) = H(t)y(t). Como

u′gen(t) = H(t)y′(t), (667)

u′′gen(t) = δ(t) +H(t)y′′(t), (668)

entonces u satisface
u′′gen(t) + 2u′gen(t) + 3u(t) = δ(t) +H(t)e−t sin t (669)

Tomando la transformada de Laplace de ambos miembros, vemos que

L
(
u′′gen

)
(z) + 2L

(
u′gen

)
(z) + 3L (u) (z) = L (δ) (z) + L

(
H(t)e−t sin t

)
(z). (670)

Sea U(z) = L (u) (z). De lo anterior, obtenemos

z2U(z) + 2zU(z) + 3U(z) = 1 + 1
(z + 1)2 + 1 , (671)

De aqúı en adelante el procedimiento es estándar a estas alturas; calcularemos los residuos de la forma más
sencilla posible. Vemos que U satisface

U(z) = 1
z2 + 2z + 3 + 1

(z2 + 2z + 3)(z + 1 + i)(z + 1− i) , (672)

pero como z2 + 2z + 3 tiene ráıces en
z = −1± i

√
2, (673)

entonces, tomando k± = −1± i
√

2 para simplificar la escritura,

U(z) = 1
(z − k−)(z − k+) + 1

(z − k−)(z − k+)(z + 1 + i)(z + 1− i) . (674)

Ahora, sean R1, R2, r1, y r2 tales que

R1(z) = 1
(z − k−)(z − k+) , R2(z) = 1

(z − k−)(z − k+)(z + 1 + i)(z + 1− i) , (675)

con
L (r1) (z) = R1(z), L (r2) (z) = R2(z). (676)

Hallaremos a r1 y r2 por separado, tal y como hemos hecho en los ejercicios anteriores. Afortunadamente, los
polos tanto en R1 como R2 son simples, y los residuos pueden hallarse directamente.
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r1(t): para hallar los residuos de etzR1(z) basta con emplear la fórmula de su preferencia. Estos resultan

Res
(
etzR1(z); k−

)
= − 1

2i
√

2
exp
(
−t− it

√
2
)
, (677)

Res
(
etzR1(z); k+

)
= 1

2i
√

2
exp
(
−t+ it

√
2
)
. (678)

Por tanto,

r1(t) = H(t)
[

1
2i
√

2
exp
(
−t+ it

√
2
)
− 1

2i
√

2
exp
(
−t− it

√
2
)]
. (679)

Reescribiendo un poco, obtenemos

r1(t) = 1√
2
H(t)e−t sin(t

√
2). (680)

r2(z): de nuevo, como los polos son simples, el trabajo pesado es solo la carpinteŕıa necesaria. Empleando
la fórmula de su preferencia,

Res
(
etzR2(z); k−

)
= 1

2i
√

2
exp
(
−t− it

√
2
)
, (681)

Res
(
etzR2(z); k−

)
= − 1

2i
√

2
exp
(
−t+ it

√
2
)
, (682)

Res
(
etzR2(z); −1− i

)
= − 1

2i exp (−t− it) , (683)

Res
(
etzR2(z); −1− i

)
= 1

2i exp (−t+ it) . (684)

Por tanto,

r2(t) = H(t)
(

1
2i
√

2
e−te−it

√
2 − 1

2i
√

2
e−teit

√
2 + 1

2i e
−teit − 1

2i e
−te−it

)
. (685)

Reescribiendo,

r2(t) = H(t)
(
− 1√

2
e−t sin(t

√
2) + e−t sin t

)
. (686)

Finalmente, juntando r1 y r2, u resulta
u(t) = H(t)e−t sin t. (687)

D.3
Con las herramientas de la transformada de Laplace en mano, podemos hallar el propagador directamente de
una ecuación en derivadas generalizadas: sea u una función causal y U su transformada de Laplace. Considere

(D3 − 2D2 −D + 2)u = δ. (688)

Tomando la transformada a ambos miembros, obtenemos

(z3 − 2z2 − z + 2)U(z) = 1. (689)

Por tanto, U satisface
U(z) = 1

z3 − 2z2 − z + 2 . (690)
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Factorizar un polinomio de tercer grado no es tarea fácil. Sin embargo, no es dif́ıcil observar que 1 es una ráız
de z3 − 2z2 − z + 2, de manera que

z3 − 2z2 − z + 2 = (z − 1)(z2 − z − 2), (691)

y con esto, podemos factorizar completamente como

z3 − 2z2 − z + 2 = (z − 1)(z + 1)(z − 2). (692)

Entonces,
U(z) = 1

(z − 1)(z + 1)(z − 2) . (693)

Todos los polos de U son simples, y los residuos pueden hallarse directamente como

Res
(
etzU(z); 1

)
= −1

2e
t, (694)

Res
(
etzU(z); −1

)
= 1

6e
−t, (695)

Res
(
etzU(z); 2

)
= 1

3e
2t. (696)

Finalmente,
u(t) = H(t)

(1
3e

2t + 1
6e
−t − 1

2e
t
)
. (697)

D.4
Comencemos por tomar la transformada de Laplace de ambos miembros. Sea U(z) = L (u) (z), entonces,
tomando la transformada, obtenemos

z3U(z) + kU(z) = zk, (698)

de manera que U satisface

U(z) = zk

z3 + k
. (699)

Ahora, bajo la condición k ≤ 5, pueden ocurrir una de dos cosas. La primera, que k < 3, en cuyo caso

zk

z3 + k
(700)

es irreducible, y la segunda, con 3 ≤ k ≤ 5, donde

zk

z3 + k
= zk−3 − kzk−3

z3 + k
. (701)

Entonces, consideremos cada caso por separado:

k < 3: bajo esta suposición, hallar los residuos de etzU(z) basta para encontrar a u. Supongamos que
β3 = k, β ∈ R. Entonces, etzU(z) tiene polos simples en

z = −βe2πin/3, n = 0, 1, 2. (702)

Como los polos son simples, los residuos pueden hallarse directamente mediante alguna fórmula conve-
niente y resultan

Res
(
etzU(z); −β

)
= 1

3(−1)kβk−2e−βt, (703)

Res
(
etzU(z); −βe2πi/3) = −1

3(−1)ke2πik/3e−πi/3βk−2 exp
(
βt

2 − i
βt
√

3
2

)
, (704)

Res
(
etzU(z); −βe4πi/3) = 1

3(−1)ke4πik/3e−2πi/3βk−2 exp
(
βt

2 + i
βt
√

3
2

)
. (705)
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Por tanto,

u(t) = (−1)kβk−2

3 H(t)
[
e−βt + e4πik/3e−2πi/3 exp

(
βt

2 + i
βt
√

3
2

)
−e2πik/3e−πi/3 exp

(
βt

2 − i
βt
√

3
2

)]
, (706)

para k < 3.

3 ≤ k ≤ 5: en este caso, la situación es similar, solo que ahora tenemos el término adicional zk−3 que
corresponde a la transformada de Laplace de δ(k−3). Concentrémonos entonces en

R(z) = kzk−3

z3 + k
. (707)

Como en el caso anterior, etzR(z) tiene polos simples en z = −βe2πin/3, n = 0, 1, 2. Por tanto, los
residuos pueden calcularse directamente sin mayor:

Res
(
etzR(z); −β

)
= −k3 (−1)kβk−5e−βt, (708)

Res
(
etzR(z); −βe2πi/3) = k

3 (−1)ke2πik/3e−πi/3βk−5 exp
(
βt

2 − i
βt
√

3
2

)
, (709)

Res
(
etzR(z); −βe4πi/3) = −k3 (−1)ke4πik/3e−2πi/3βk−5 exp

(
βt

2 + i
βt
√

3
2

)
. (710)

Por ende,

u(t) = δ(k−3)(t) + k(−1)kβk−5

3 H(t)
[
e−βt + e4πik/3e−2πi/3 exp

(
βt

2 + i
βt
√

3
2

)
−e2πik/3e−πi/3 exp

(
βt

2 − i
βt
√

3
2

)]
, (711)

para 3 ≤ k ≤ 5.
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E.1
Podemos hallar el propagador directamente de una ecuación en derivadas generalizadas. Sea u una función
causal. Considere la ecuación del propagador,

(Dn + 1)u = δ. (712)

Tomando la transformada de Laplace de ambos miembros, obtenemos

znU(z) + U(z) = 1. (713)

De aqúı que U satisface,
U(z) = 1

zn + 1 . (714)

Esta expresión es muy similar a algunas que hemos encontrado en ejercicios anteriores. De hecho, estaŕıamos
tentados a decir que U tiene polos simples en

z = −e2πik/n, k = 0, 1, 2, . . . , n− 1, (715)

pero esto es falso, pues si n = 2, entonces
z2 = 1, (716)

cuando en realidad necesitamos que zn = −1. Sin embargo, esto puede ser resuelto fácilmente tomando

z = eπi/ne2πik/n, k = 0, 1, 2, . . . , n− 1. (717)

Como todos los polos son simples, pues no hay ráıces repetidas, entonces el residuo en cualquiera de las
singularidades puede calcularse con generalidad. Aplicando la fórmula que mejor maneje, puede obtener que

Res
(
etzU(z); eπi/ne2πik/n) = − 1

n
eπi/ne2πik/n exp

(
teπi/ne2πik/n) . (718)

Sin embargo, hay una mejor forma de ponerlo, pues como

πi

n
+ 2πik

n
= iπ

n
(2k + 1), (719)

entonces tomando m = 2k + 1, podemos reescribir a (718)

Res
(
etzU(z); eπim/n

)
= − 1

n
eπim/n exp

(
teπim/n

)
, m impar, con m ≤ 2n− 1. (720)

Como éste resultado es válido para cualquiera de las singularidades, entonces, y en virtud de (482), conclúımos
que

u(t) = − 1
n
H(t)

2n−1∑
m impar

eπim/n exp
(
teπim/n

)
. (721)
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