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Prdlogo

El curso de Matematicas VII, tal y como se imparte en la Universidad Simén Bolivar,
es un curso que requiere de una preparacion mental previa adicional, en comparacion a
los cursos anteriores. Después de Matematicas II, IV, V y VI, estd bien fundada en el
estudiante la concepcién clasica del calculo diferencial. Estos, al verse sucesivamente,
dan la impresion de complementarse el uno al otro, como rios distintos que eventual-
mente juntan su cauce. Y aunque esta perspectiva es de alguna forma cierta, puede
facilmente resultarle enganosa el nuevo estudiante de Matematicas VII: su paradigma
y los nuevos objetos matematicos en ella definidos precisan de una visiéon un tanto més
abierta, aunque no necesariamente mas abstracta que la de Matematicas II1. Pero aho-
ra la idea principal no es complementar, sino construir, con las herramientas a mano,
un nuevo punado de conceptos matematicos que incrementen sustancialmente nuestro
poder de calculo.

En esencia, Matematicas VII es un curso sobre integracion, y sus piedras angulares
son la Delta de Dirac, ahora como un objeto de caracter algebraico, la derivada ge-
neralizada, y las autofunciones. En este sentido, si se dedica el tiempo necesario a
comprender estos conceptos, el grueso de Matematicas VII se torna algo bastante sen-
cillo, y en ocasiones hasta natural. Debo hacer un énfasis nuevamente en la importancia
de entenderlos, por miedo a no ser lo suficientemente claro: a lo largo de Matemati-
cas VII, estos conceptos deberan convertirse en segunda naturaleza para el lector; algo
tan elemental como la pendiente de una recta, el teorema de Pitdgoras, o un producto
notable. Logrado esto, mas alld de gozar de una buena posibilidad de obtener la nota
maxima, se habran consolidado las ideas fundamentales del curso, y con ellas, el gran
poder de calculo que estas envisten.

La presente guia apunta a servir como recurso para justamente eso: la consolidacion
de ideas fundamentales, asi como un paseo de la mano por los detalles importantes de
la teoria, ejercicios de variada dificultad y problemas reales en los cuales Matematicas
VII reluce por su elegancia y sencillez al momento de resolver. Aunque ciertamente no
pretende ser una inmensa coleccién de problemas propuestos, se han incluido en la guia
suficientes problemas, muchos originales y algunos de fuentes diversas, como para hacer
de su resolucién un objetivo tanto factible dentro del tiempo de estudio disponible en
el trimestre como gratificante en el A&mbito académico.

Finalmente, debo un agradecimiento a Manuel Morgado y al profesor Mario Caicedo,
por sus interesantes conversaciones sobre el tema, y a mis compaifieros de GECOUSB
por inspirarme a llevar a cabo la ardua labor de recopilar, organizar y resolver el con-
tenido de la presente guia. Espero le sirva este humilde trabajo.

En memoria de Stephen Andrea.

Samuel Alonso
Maracay, abril de 2018



Como Usar la Guia

A lo largo de la guia, los problemas propuestos se encuentran organizados de dos
maneras: por tema y dificultad. Cada enunciado es precedido por una etiqueta y el
nimero de problema correspondiente a su tema. Las etiquetas dan una idea de la
complejidad del problema:

= T de trivial; un ejercicio sélo para entrar en calor.
= S de simple; algo sencillo pero que requiere de mas trabajo.

= D de dificil; un reto al lector, aunque no necesariamente algo pertinente a un
parcial.

= E de especial; una aplicacién interesante del contenido o un esfuerzo adicional por
entender la teoria.

Los ejercicios de la guia han sido seleccionados de forma tal que le ahorren célculos
redundantes. Si en algin punto siente que el calculo se vuelve extremadamente labo-
rioso, seguramente ya habra resuelto algo muy similar en ejercicios anteriores; la lista
ha sido disenada particularmente para que esto sea posible. En este sentido, es muy
recomendable que no se salte ejercicios y que no esquive las demostraciones, de haber-
las, sino que haga de la resolucién de esta guia un proceso secuencial. De igual manera,
encontrara la solucion a cada ejercicio en la seccion final. Asimismo, le invito a no evi-
tar los ejercicios especiales, pues estaran completamente dentro de su alcance de haber
resuelto los ejercicios anteriores. Como nota adicional, siéntase en la libertad de citar
cualquier féormula o teorema que requiera para la solucion de los problemas, siempre y
cuando no vaya en contra del propésito del ejercicio.

Como convenciones en la notaciéon, a menos que se indique lo contrario, D denotara
derivacion siempre y cuando no sea ambiguo respecto a otras variables o parametros;
para los casos en que sea ambiguo, el subindice indicara la variable con respecto a la
cual sucede la derivacién. «, 3, v y A usualmente denotaran parametros, mientras que
u, v, 4, T, z, s usualmente denotaran variables. Un recordatorio ttil es que f(z) de-
nota el valor de alguna funcién f evaluada en x, mientras que f hace referencia a la
funcién en si como objeto matematico. Al definir operadores diferenciales, el simbolo 1
se entendera como el elemento identidad del espacio pertinente. Si f es alguna funcion,
L (f) denotard su transformada de Laplace.

Finalmente, cualquier informacién sobre errores de redaccién o en la soluciéon de al-
guno de los problemas sera bien recibida y puede enviarla al correo del autor o al de
GECOUSBI| Si es profesor u ostenta algiin cargo académico relacionado con la materia
y desea participar en los esfuerzos de revisién, puede escribir a las direcciones anteriores.

114-10028@Qusb.ve, gecousb@gmail.com



Para Isabel, como simbolo de gratitud
por su inagotable paciencia,

César, por su incondicional apoyo,

y Gabriel, por su alegria y perseverancia,

a ustedes dedico este trabajo.



Lista de Problemas



Derivada Generalizada

T.1

Evalte, empleando la derivada generalizada, la integral

/Oo f(x)cos(Ax)dx, Xe€R,

donde
—x4+1, 0<z<1;
flz)=9 z—-1, 1<zx<2 (2)
0, d.o.m.
T.2

De forma similar, evalte la integral

/_O:O f(z)sin(wx)de, weR,

donde
2e+2, —-1<zx<-1/2
f@={1  12<s<y (4)
0, d.o.m.
T.3

Halle el valor de la integral
/ (@) cos(\z) d

como funcién de A € R, donde

fx) =

r—1, 0<z<1;

204+ 2, -1<2<0;
0, d.o.m.

S.1

Calcule el valor de -
/ f(z)cos(kx — At)dx, k>0



como funcién de A € R, donde

x, 0<uz<2m/k;

I(@) :{ 0, dom. (8)

S.2.A

Muestre que 220'(x) = 0 en el sentido de distribuciones.

S.2.B

Andlogamente, muestre que 23" (x) = 0.

S.2.C

Finalmente, muestre que 76 (z) = 0 si k > n. Considere el caso k = n y exprese la
distribucién resultante en términos de 9.

S.3.A

Considere a H(kx), donde H es la funcién de Heaviside. Empleando la definicién de la
derivada generalizada, muestre que

5(ka) = |]1|(5(:c). ()

(Sugerencia: analice los casos k > 0y k < 0 por separado). Muestre ademds que ambas
funciones generalizadas son iguales en el sentido de distribuciones.

S.3.B

De forma similar, muestre que

/ L .
8 (kx) = :I:ﬁé (x), segin k = 0. (10)

S.4.A

Considere la distribucién 6(z), y definamos v(x) = §(—x). Muestre que

en el sentido de distribuciones. ;Se sigue entonces que §(x) = 0(—x)?
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S.4.B

Ahora, definamos 5(z) = §'(—x). De forma andloga, muestre que

Blz) = —0'(x).

.Se sigue entonces que §'(—x) = —d'(x)?

(12)

S.5.A
Sea u(t) = H(t)t. Calcule u!_, ().

gen

S.5.B

Sea u(t) = H(t)e . Muestre que v/, (t) + Mu(t) = 6(t).

gen

S.5.C

Sea g(t) = H(t)sin(kt). Halle ¢”., (t) y muestre que

gen

Ggen(t) + K2g(t) = ko(t).

S.5.D

Sea f(t) = H(t) cos(kt). Muestre, de forma similar, que

Foen(t) + K2 £(t) = 0'(2).

Lleve a cabo un célculo similar para y(t) = H(t)sinh(kt) y q(t) = H(t) cosh(kt).

(14)

D L] 1
Halle el valor de la integral
[ ety da

donde
22 —a?, —2a <z <20
0, d.o.m.

a € R.

(15)

(16)




D.2

Efectie la integral

/OO ze ™ f(x)da, (17)
donde
x4+ A x>0
f(a:)—{ .. <0 AeR. (18)
D.3
Calcule la integral
/ e Mt dr, k> 0. (19)
0
D.4
Evalte la integral
/ e "2t (20)
0

para s entero estrictamente positivo. Esta integral, cuando se considera como funciéon
del parametro s, es conocida como la funcién Gamma de Euler I'(s).

E.1

La Ley de Stefan-Boltzmann establece que la potencia disipada por unidad de area de
un cuerpo negro a temperatura 7' es proporcional a la cuarta potencia de T'. Esta ley
puede obtenerse directamente de la Ley de Planck efectuando la integral

o2rh (oo 13
= / dv. 21
2 Jo e% —1 v ( )
Mediante la sustitucién h h
v
=—. df=-—d 22
b=y W=7 (22)
la integral se reduce a
27rk4T4 3
= 2
S c2h3 / b eﬁ — 1 (23)

Efecttie esta integral y verifique el valor de la constante de la Ley de Stefan-Boltzmann
(pista: reescriba la fraccién en términos de e=? y reconozca una serie geométrica. Cite
la suma resultante).




Convoluciéon

T.1.A

Sea H(t) la funcién de Heaviside. Halle la convolucion (H x H)(t)

T.1.B
Sea f(t) = H(t)t. Halle (H = f)(t).

T.2.A
Sea u(t) = H(t)t*. Halle (H *u)(t).

T.2.B

Sea ¢(t) = H(t)t. Calcule (g * g)(t). {Coincide este resultado con el de la convolucién
anterior?

S.1

Sean f(t) = H(t)t" y g(t) = H(t)t*, con n,k € N. Evaltie (f * g)(t) sin usar la
definicion.

S.2

Sea L el operador diferencial
L=D?>+X, XeR (24)

Halle el propagador causal de L.

S.3

Definamos f,(x) = H(z)e**. Evalte la convolucién (f * f,)(t).




S.4.A

Considere la funcién u(r) = v H(x). Halle u;,,(z) y calcule (H * ug,,) ().

S.4.B

. Es cierto que para una funcién causal u arbitraria H * u/

gen = u? Pruébelo.

S.5.A

Muestre que (f(z —a) * g(x))(t) = (f * g)(t — a).

S.5.B
Sea y(t) = H(t) — H(t — 1). Calcule (y *y *y)(t).

S.6

Sea u tal que
ul . (r) = zH(z) — 32°H(x — 1). (25)

Halle u(z).

S.7

Halle u causal que satisfaga

(H % u)(t) +u(t) = H(t). (26)

S.8.A
Sean fi(t) = H(t)sin(kt). Halle la convoluciéon (fx x f,)(t), donde k,w € R.

S.8.B

Sea uy(t) = H(t) cos(kt). Halle (fy * u,)(t) sin usar la definicion.

S.8.C

De forma similar, halle (uy * u,)(t) sin usar la definicién.
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D.1.A

Sea
N

f(z) = Z(—l)”H(m — ). (27)

n=0

Sea ademads g(x) = H(z)sinz. Halle la convolucién (f * g)(x).

D.1.B
Grafique (f * g)(z) para N = 3.

D.1.C

Tomemos ahora v(z) = H(z)cosz. Halle (f % v)(x). Esto no deberia tomarle mas de
tres lineas.

D.2.A

Sea L el operador diferencial dado por
L=D*+XD+n, \neR (28)

Halle el propagador causal de L.

D.2.B

Use el resultado anterior para resolver el problema a valores iniciales
F'(2) + 2f(x) + 2f(2) = 2cos z, (29)

con f(0) =0, f(0) =1/2.
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Transformada de Laplace

T.1

Use la definicién de la Transformada de Laplace para hallar £ () (z).

T.2

De forma similar, use la definicién para hallar £ (H) (z), donde H(t) es la funcién de
Heaviside.

S.1

Halle £ (t"H(t)) (z), n € N. Use este resultado para mostrar que

c (H(t)eat - ) () = (1 aER. (30)

(n—1)! z—a)"

S.2.A
Sea f(t) = H(t)sin(wt). Halle £ (f) (2).

S.2.B

Reemplace el seno por coseno y repita el calculo.

S.3.A

Sea u una funcién causal y de crecimiento exponencial. Si U(z) = £ (u) (), muestre
que £ (u’gen) (z) = 2U(2).

S.3.B

Muestre también que L (tu(t)) (z) = —U’(z), y por tanto que L (t" u(t)) (z) = (—=1)"U(2),
provisto que esta transformada exista.
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S.4.A

Muestre que L (u(t —tg)) (2) = U(z)e *". Muestre que L (u(t)e*) (z) = U(z — ).

S.4.B

Sea ¢ causal y de crecimiento exponencial. Si G(z) = L(g)(z) y U(z) = L (u) (2),
muestre que L (u* g) (2) = U(2)G(z).

S.5
Sean f(t) = H(t)sinhwt y u(t) = H(t) coshwt, con w > 0. Halle L (f) (z) y L (u) (2).

S.6
Use el resultado de para hallar u(t), donde

. (t) = &'(t) — 2H(t — 2). (31)

gen

S.7.A

La transformada de Laplace de e no existe debido a que esta funciéon crece muy
fuertemente. Sin embargo, considere la funcién ¢(t) = e~t*/2. Esta funcién satisface
to(t) + ¢.,(t) = 0. Con esta informacién, y las propiedades de la transformada de

gen
22/2

t2/2

Laplace, muestre que L (¢) (2) x e

S.7.B

Use la definicion de la transformada de Laplace bilateral para observar que dicha cons-
tante de proporcionalidad es en realidad una integral que parece depender de z. De argu-
mentos para mostrar que dicha integral realmente no depende de z, y pruébelo. Consulte
el valor de dicha integral, o calctlelo usted mismo. Finalmente, diga £ (e_tQ/ 2) (2).

S.7.C

En internet puede encontrarse que £ (e*ﬁ/ 2) (2) o e**/%erfc (z/ \/§>, donde erfc(x) es
la funcion de error complementaria. ;Hay algiin error en nuestros calculos? Investigue
y explique la diferencia.

13



S.8

Calcule la integral

/ e M sin nt dt, (32)
0
donde k, n € R.
S.9
De forma similar, calcule
/ e~ 't? cos® nt dt, (33)
0
conn € R
S.10
Use las propiedades de la Delta de Dirac para hallar
1
c (35'(395 - 2)) (2). (34)
S.11
Halle la siguiente transformada de Laplace:
L (H(a: - u)e_i”) (2) (35)
Sugerencia: si le confunde la prioridad de las propiedades, emplee la definicién.
D L] 1
Efectiie la integral
/ e sindktdt, 0<A<oo, keR. (36)
A
D.2
Sea )
t)=H(t)—— 37
£(0) = H()—— (37)

halle £ (f) (2).
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D.3

Halle la transformada de Laplace de

Sugerencia: usted no conoce

pero si conoce L (H(t)sinkt) (z).

D.4.A

En Ingenieria Eléctrica, las funciones de Bessel son ampliamente utilizadas. En parti-
cular, la funcién de Bessel de orden cero J, satisface la ecuacion diferencial

I+ tT)+ 2T =0, J(0)=1,  JJ(0)=0. (40)

Reescriba la ecuacion diferencial en términos de u(t) = H(t)Jo(t) v halle £ (u) (2),
suponiendo que £ (u) (0) = 1, £ (u)" (0) = 0.

D.4.B

Empleando el resultado anterior, muestre que

sint:/otjo(s)jg(t—s) ds, t>0. (41)

E.1.A

En Mecanica Cuantica es bien conocido el Principio de Incertidumbre. Este principio
establece que no pueden determinarse con infinita precisién la posicién y el moméntum
de una particula de forma simultanea. En realidad, este no es ningtn principio intrinse-
camente cuantico; es solo una consecuencia de la naturaleza ondulatoria de la dindmica
del sistema. Para ilustrar esto, considere una onda plana limitada a una regiéon de ancho
2L dada por

u(z) = [H(x + L) — H(x — L)] e, con k= (42)

ke

Halle la transformada de Laplace de wu.
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E.1.B

Ahora, tome z = iw. Es decir, considere la transformada sélo sobre el eje imaginario.
A este caso limite de la Transformada de Laplace se le conoce como Transformada de
Fourier. Muestre que cuando z = iw,

2L sin(oL)

£ (w) (i) = =227,

(43)

7T
o=w— —.
L

E.1.C

Grafique £ (u) (iw) como funcién de w para varios L. Observe que esta grafica tiene un
maximo en w/L, y que mientras mas grande es L mds delgado se vuelve el pico. Note
entonces que no puede obtener una senal concentrada en x y una sefial concentrada en
w al mismo tiempo. Este es un ejemplo simple del Principio de Incertidumbre. Mas alla
de sus implicaciones en la Mecanica Cudantica, los ingenieros electrénicos lidiaran con
este fenomeno al filtrar sefiales muy breves en el tiempo, y los ingenieros eléctricos al
disenar sistemas de radar.

E.2.A

A continuacion trataremos de seguir paso a paso una cuenta importante de la guia de S.
Andrea. Considere una funcién R(z), que es la transformada de Laplace de otra cierta
funcién causal r(t). Supongamos adicionalmente que R(z) es una funcién racional de la

forma )
ag+ a1z + asz® + -+ - + a, 2™

bo+ b1z +baz? + -+ b2t
El Teorema de Descomposicién en Funciones Racionales (la base del método de frac-
ciones simples) indica que esta funcién racional puede escribirse como

R(z) = (44)

Cik Cok Cpk
R(z) =Y c2f + + + -+ P, (45)
AR TeEr P M e A Pl e
con Ny + Ny +---+ N, = [. Denominemos al j-ésimo sumando por
N; ..
Ri(2) =Y —F—, (46)
’ kz::l (z —ay)t

Ahora trataremos de reconstruir a r(t) sumando por sumando. Piense que esta R;(z)
es la transformada de Laplace de un cierto r;(t) causal, de manera que

L(r(t)) (z) = R;(2). (47)
Utilice los resultados de S.1 para mostrar que

N » th—1
ri(t) = H(t) k;cjke ! m (48)

16



E.2.B

Ahora intentaremos reescribir la suma anterior. De Matematicas IV, es conocido que la

serie de Taylor alrededor de z = 0 de €** es
o0 tnzn

=y

n=0

n!

Por tanto, la serie de Laurent alrededor de z = 0 de e /2" resulta

tz 00 tnznfk
S D
z = nl
Reescriba la expresion
tz
e
(z = ay)*

en términos de una serie de Laurent similar a (50)), y muestre que

Rl ( ot? )
e =Res| —; a5 | .
(k—1)! (z—ay)k"

E.2.C

(49)

Use las propiedades del residuo para mostrar que r;(t) = H(t)Res (e"*R;(2); «;). Fi-

nalmente, y como Res (¢"*R;(2); «;) = 0 para i # j, concluya que

r(t) = ZO: cxd® () + H(1) 27’: Res (etZR(z); aj) .
k=0

J=1

(53)
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Transformada Inversa de Laplace

S.1.A
Considere la funcion
B 4221
22+1
Verifique que si u(t) = ¢'(t) + H(t) cost — H(t)sint, entonces L (u) (z) = U(z).

U(z) = (54)

S.1.B

Use el método de los residuos para hallar u(¢) mediante

u(t) = H(t) > Res (etZU(z); oz) : (55)

aeC

S.1.C

Si en principio el método funciona para cualquier funciéon racional, piense y explique
b

por qué este resultado y el anterior no coinciden (si hizo el ejercicio E.2 de la seccién

anterior, ya se respondi6 en el procedimiento).

S.2

Sea ¢ una funcién causal que satisface
Ggen(t) = 6(t) + H(t). (56)

Halle ¢(t).

S.3

Resuelva el problema de valores iniciales

Ky'(t) +y(t) =0, y(0)=0, ¢'(0)=—13. (57)
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S.4

Halle y causal que satisfaga

xy +y==xsinx, y(0)=0. (58)

S.5

Halle una funcién u tal que

() = H(t — ) + 28" (t) + 45'(2 — 1. (59)

gen

S.6

Sea f una funcién causal que satisface

fro(t) = H(t)te™ + H(t)t?e ™ 4 §(t). (60)

gen

Halle f(t).

S.7

Halle una funcién generalizada u tal que

ult+a)+ult) =06(t+a), aekR. (61)

S.8

Halle la convolucion de la funcién Heaviside consigo misma n veces. Es decir, (H * H *
. % H)(t), donde la cantidad de convoluciones es n.

S.9.A

Sea u una funcion causal dada, y ¢ una funcién causal arbitraria. Halle g tal que

(g%u)(t) + Mu(t) =0, AeR. (62)
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S.9.B

Halle g tal que

(g w)(t) + Au(t) = Bg(t), u(t) = H(t)sin(t), (63)
donde A\, B € R, 5 # 0.
S.10
Halle una funcion u causal que satisfaga
2t —222+1
= == - 4
S.11
Resuelva el problema a valores iniciales
y"() +yt) =t y(0)=-1, y(0)=0, y"(0)=1, (65)
utilizando la transformada de Laplace.
D.1
Resuelva la ecuacién diferencial
1
ty" (1) +3y"(1) —ty(t) =0, y(0)=0, ¥ (0)=g5, ¥"(0)=0. (66)
D.2
Halle y causal que satisfaga
y"(t) +2y/(t) + 3y(t) = e 'sint, y(0)=0, y(0)=1 (67)
D.3
Sea L un operador diferencial tal que
L=D*-2D*>-D+2. (68)

Halle el propagador causal de L.
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D.4

Halle una funcién u que satisfaga

un, (t) + ku(t) = 6®™(t), keN, k<5 (69)
E.1
Sea L, el operador diferencial dado por L, = D" + 1, de forma que
Lal(f) = £+ . (70)

para f € C*. Halle el propagador causal de L.
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Soluciones
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Derivada Generalizada

T.1

Para evaluar la integral podemos aprovechar el caracter ciclico de las derivadas de cos z. Primero, consideremos
que la integral puede expresarse en términos de la aplicacién de una funcién generalizada como

<f(:r) | cos )\:r> . (71)
Pero como
<f;/5n(a:) ’ cos )\x> =)\ <f(a:) ‘ cos )\;1:> , (72)
entonces
<f(m) ’ cos )\x> = —% <f;/en(w) ‘ cos )\:L‘>. (73)

Hallemos ahora f;’en(x) Derivando una primera vez obtenemos

-1, 0<z<1;
f;en(x) =6(z)—0(z—2)+ 1, 1<z<2; (74)
0, d.o.m.
Derivando nuevamente,
foen(z) =6 () — 8" (x — 2) — 6(x) +28(x — 1) — &(z — 2). (75)
Entonces,
<f£','m(a:) ’ cos )\x> = —Asin2X + 2cos A — cos 2\ — 1. (76)
Finalmente,
/ F(x) cos Aa dz = )\st)\—200)\52)\—&—(3052)\—1—17 A£0. (77)

Para halla el valor de la integral para A = 0 basta con tomar el limite de la expresién cuando A — 0, o efectuar

/_Z f(x) de, (78)

cuyo valor puede deducirse incluso graficamente, y es 1.

T.2

Se procede exactamente de la misma forma que en el ejercicio notando ahora que

<f(x) | sinwx> = fé <f;’en(m) | sinwx> . (79)

Derivando una primera vez, tenemos

2, —-l<z<-1/2

s (s 2) o= ) o {312
Derivando de nuevo,
Fpenl@) = =5 (24 %) +8 (o= %) (e -1+ 20+ 1) 25 (v + %) . (81)
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Por tanto

<f;’en(:v) | sinw$> = wcosw — 2sinw + 2sin (g) . (82)
Finalmente,
/ (o) sinwz dz = —(.ucosou—1—251;124;.)—281n(¢u/2)7 (83)
con -
/ f(z)sinwzrdr =0, w=0. (84)
Se procede de la misma forma que en y usando las relaciones conocidas. Véase que
2, -1<z<0;
foen(z) = =38(x) +q 1, 0<z<1; (85)
0, d.o.m.
Luego,
foen(z) = =38"(z) +26(x + 1) — §(z) — 6(x — 1). (86)
Por tanto,
<f;'en(m) ‘ cos )\m> = —1+4cosA. (87)
Finalmente o
/ F(z) cos Az dz = 1}#“ A0, (88)
con -
/ f(z)cos Az dx = %, A=0. (89)
Siguiendo el mismo orden de ideas de los ejercicios y observando con cuidado que
1
<f(:c) | cos(kz — )\t)> =13 <f;en(m) ’ cos(kz — /\t)> . (90)
La primera derivada generalizada de f resulta
, 2T 27r) 1, 0<ax<2n/k;
=—— - — 1
Toen(®) 50 (m KT { 0, d.o.m. (91)
Luego,
1 2wy, 2w 27
Spent@) = =226 (2= ) +8@) =8 (2= ) (92)
y entonces
<f;'en (z) | cos(kx — )\t)> = 27 sin At. (93)
Finalmente,
o 27 sin At
f(z)cos(kx — A\t)de = ————, k>0. (94)

k2

e}
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S.2.A

Consideremos la accién de x?6’(x) sobre una funcién de prueba arbitraria ¢ € C°°. Vemos que, por las
propiedades de las funciones generalizadas,

(26 (2) | 6()) = (5'(2) | 6 (a)) . (95)
Luego, aplicando las propiedades de la derivada generalizada,
<§/(m) ’$2¢(x)> = - <5(x) ’ 2z¢(z) + x2¢/(x)> =0, VopelC=. (96)
Esto implica entonces que, en el sentido de distribuciones,

2?8 (z) = 0. (97)

S.2.B

De forma similar,

(2%6" () | () = (6" (2) | 2*¢()) (98)
—(0'(@) | 32°¢(2) + 2°¢'(2)) (99)
= (6(x) | 6z¢(z) + 62°¢' (z) + 2°¢" (x)) =0, (100)

para todo ¢ € C*°. El argumento es el mismo, y el resultado es que 238" (x) = 0, en el sentido de distribuciones.

S.2.C

La idea es la siguiente: considere

("8 (@) | (@) = (8" (2) | 2"8(2)). (101)

Mediante las propiedades de la derivada generalizada,
n n dn
(@) [a*6(@) = (~1)" (8(z) | T (a"6(@)) ). (102)

Pero, como <5(m) | x5¢(m)> =0,V € C°° y s > 0, entonces después de derivar n veces a z*¢(x), al final todos
los términos resultantes involucran el producto de ¢, o alguna de sus derivadas, con un factor de la forma z*,
s > 0, que al ser evaluados con §(z), resultan en 0. Mas formalmente, el resultado de derivar n veces a z*¢(x)
es de la forma

> ama's™ (@), (103)

l—m=k—n

donde ¢;,,, son constantes apropiadas, y 0 < k —n <[ < k. Por tanto, como
<5(x) ’xl¢(m)(x)> =0, para [, m>0, (104)

entonces
(1" (3@) | o (s*()) ) =0, (105)

y por consecuencia,

("6 (z)| ¢(z)) =0, k> n. (106)

Si ahora dejamos que k = n, el argumento es exactamente el mismo con una pequefia salvedad; ahora habra
un término, y solo uno, que no va acompanado de alguna potencia de x: el que resulta de las k derivaciones
sucesivas del factor z*. Este término, que puede calcularse directamente como

k! p(z), (107)
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es el tinico que no se anula al tomar

0" (5] - (o) ), (108)
(recuerde que k = n) y por tanto,

("5 (@) | ¢(x)) = (=1)"n! $(0) = ((=1)"n! d() | (a)) (109)

Finalmente,
26 (2) = (=1)"n! 6(x). (110)

S.3.A

Supongamos inicialmente que k£ > 0. De aqui, que si H es la funcién de Heaviside, entonces
H(kz) = H(x), (111)
segun la definicién de la funcién de Heaviside. Ahora, definamos la convencién

Lu—d

- I ’
du gen

(112)

sblo para tener en claro respecto a cudl variable se efectiian las derivadas y hacer mas legible el texto. Es sabido
que
L. H(z) = 6(x). (113)

En ese sentido, derivando a ambos lados
L.H(kx) = LyH(z) = é(x). (114)

Si tomamos que u = kz, entonces, en virtud de la regla de la cadena,

L.H(kx) = L H(u) - Lyu = ké(u) = kd(kx). (115)
Por tanto,
ké(kx) = 6(z) que implica d(kz) = %6@) (116)
De forma similar, si k < 0,
H(kz)=1- H(x). (117)
Derivando a ambos lados, obtenemos que
ké(kx) = =6(x), (118)
y por ende,
5(kz) = —%5(35), k<0, (119)
Finalmente, queda probado que
5(kz) = ﬁé(m). (120)

Ahora, veamos que en efecto estas dos funciones generalizadas son iguales en el sentido distribucional. Sea
f € C°° arbitraria y consideremos
/ 0(kz) f(z) dz. (121)

Supongamos que k > 0. Véase entonces que, si tomamos el cambio de variables u = kz, la integral se modifica
a

[ s () du= a0 = [ fsrwas (122

— 00 — 00
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Por ende, obtenemos la relacién
5(kz) = %5(95), k>0, (123)

Si k < 0, del cambio de variables u = kx obtenemos la misma integral, pero ojo, con los extremos de
integracion cambiados, a causa del cambio de signo inducido por k.

%/js(u)f (%) du= f%/: () () du. (124)

Esta es exactamente la misma relacién, solo que con un signo (—) multiplicando. Por tanto, obtenemos la

relacién 1
O(kzx) = fzé(:v), k <O. (125)
Una vez mas, vemos que
5(kz) = I?lla(x)' (126)

S.3.B

Sin olvidar la convencién, es util observar que la regla de la cadena permite establecer una correspondencia
entre las derivadas respecto a u y x. Si f es alguna funcién suave a trozos,

Lof(u) =k-Lyf(u) = Ly =kL,. (127)
Por tanto, sigamos el andlisis del ejercicio anterior. Si k > 0, entonces
L.H(z) = kL,H(u). (128)

Derivando respecto a x nuevamente, y recordando la correspondencia establecida,

L2H(z) = kLy (Lo H(u)) (129)
=K’ L2H(u). (130)
Entonces 1
§'(x) = k*0'(kz), que implica ¢ (kz) = ?5'(1’) (131)
Para k < 0, la relacién obtenida era
LoH(z) = —kLH(u). (132)
Esto nos lleva de inmediato a
L:H(z) = —K’L2H(u), (133)
que equivale a
1
8 (kz) = —?5'@), k<O. (134)
Finalmente, queda probado que
1 ,
8 (kx) = iﬁ(sl(x), segin k 2 0. (135)

S.4.A

Para probar esta propiedad solo es necesario recordar el ejercicio y aplicar el resultado para k = —1.
La prueba es obvia e inmediata.
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S.4.B

De igual manera, la prueba resulta trivial en virtud del resultado de

S.5.A

Existen dos manera de proceder. La primera, mediante la definicién de derivada generalizada, y la segunda,

empleando la férmula de Leibniz para derivadas generalizadas. Observe que la funcién de Heaviside no hace

mas que esconder el caracter de funcién a trozos de v mediante el simbolo H. Bien podriamos haber escrito a

u mediante

u(t)—{ t, x>0;

0, =<0,

y hallar uje, (t) como

1, x>0
“lge"(t)_{ 0, <0

0, emplear la férmula de Leibniz y hallar que

1, x=2>0;

Ugen (t) = 6(t)t + H(t) = H(t) = { 0 z<0

(136)

(137)

(138)

No se deje perturbar por la diferencia sutil en el dominio de la funcién resultante. Mas adelante en sus clases

verd que esto es indiferente a efectos de la teoria de integraciéon que estd desarrollando. En la mayoria de los

casos, si la funcién no estd comprendida por demasiados "trozos”, es muy conveniente escribirla mediante la

Heaviside, y usar la formula de Leibniz para derivar.

S L] 5 L] B
Si u(t) = H(t)e ™, entonces
Upen (1) = ()N — NH(t)e ™ = 6(t) — NH(t)e .

Por tanto, se verifica de inmediato que
Ugen () + Au(t) = §(2).

S.5.C

Puede verse facilmente que
Goen(t) = 8(t) sin(kt) + kH (t) cos(kt) = kH (t) cos(kt).

Luego,

Goen(t) = 8(t)k cos(kt) — k* H (t) sin(kt) = kd(t) — k*H (t) sin(kt).

Entonces, se verifica de inmediato que

9(t) + K ggen(t) = kd(1).
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S.5.D

De forma similar,

Joen(t) = 6(¢) cos(kt) — kH(t) sin(kt) = 6(t) — kH(t) sin(kt). (144)
De aqui que
foen(t) = &' (t) — K> H(t) cos(kt). (145)
Por ende, se verifica que
Foen () + K2 f (1) = &'(2). (146)

Si ahora tomamos y(t) = H(t) sinh(kt), vemos que

Yypen (t) = kH (t) cosh(kt), (147)
y entonces
Yoen (t) = k&(t) + k* H (t) sinh(kt). (148)
Por tanto, y satisface
Ygen (1) = Ky(t) = ko (2). (149)

De forma completamente andloga, ¢(t) = H(t) cosh(kt) también satisface

Gyen () — K2q(t) = 8’ (2). (150)

D.1

Primero, observemos que tanto e~ 1=l

como f(z) son funciones pares. Por tanto, su producto también es par.
De esta manera, podemos reescribir la integral como

<, 22 —a?, 0<z<2q
2/ e “g(z)dx, g(x)—{ 0 d(:m_ (151)

Concentrémonos entonces en
<g(m) ’ e_x> . (152)

Al igual que en los ejercicios T2y el objetivo es aprovechar la naturaleza ciclica de las derivadas de
e”. Si buscamos expresar la integral en términos de la aplicacién de la Delta y sus derivadas, entonces tendremos
que derivar tres veces para eliminar la parte “clasica”de la funciéon. En ese sentido, el primer resultado que
debe obtenerse es

()| €77} == ()| (e ) = = ot | =) = ot | ). (153)

Es decir, resulta que
Goon () | eix> = <g($) ’ 67x> . (154)
"

Procedamos ahora a hallar gge,, (x). La primera derivada resulta en

/ _ 2 a2 B 2z, 0<z<20q
Ggen () = —a”d(z) — 3a”d(x — 20) +{ 0. dom. (155)
Luego,
" 2 o 26l . _ 2, 0<z< 20
Ggen () = —a”6' (z) — 30”8 (x — 2a) — 4ad(x — 2a) +{ 0 dom. (156)
Por tanto,
gyin(z) = —a8" (z) — 3a°8" (z — 2a) — 4ad' (x — 2a) + 26(x) — 28(z — 2a). (157)
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Evaluando, obtenemos

<g_gén(m) | eim> =—a®—3a%e ™ —dae 2 +2 -2 (158)
=2—a’—e?(3a° + 40+ 2) (159)

Finalmente, como

(F@) ] =2(g(x) | 7). (160)
entonces o
/ el f(z)de =4 — 207 —2e7°%(3a° + 4 +2), a>0. (161)

o)

Consideremos ,
<f(1:) | ze " > . (162)
No es dificil notar que,

———e " =ze . (163)

De aqui, que

— % <f(x) | %6—1‘2> = <f(x) | :re_z2>. (164)

Pero 1 d 1
77;2 _ 4 7(52
—5 (@] ) = 3 (fren@) [ ) (165)
Facilmente podemos obtener a fj., derivando.
, 1, x>0;
= 1
Fpen (@) = N6(2) + { RN (166)

Entonces, la integral original se separa en dos partes, pues
1 _ _ I
Q <f$llen(m) ‘ € $2> = % <5($) | € ac2> + 5/ (& o? dx. (167)

La integral de la derecha es una integral de tabla, aunque facilmente puede ser hallada mediante el Teorema
de Fubini y un cambio a coordenadas polares. Finalmente, evaluando obtenemos

/W F(z)ze™ dz = % + g (168)

Este ejercicio es un ejemplo de que no todo en la vida es facil, y aunque no podamos reducir la integracién a
meras aplicaciones de la Delta y sus propiedades, bien podemos transformar el problema sin resolver a varios
problemas mas sencillos, o ya resueltos previamente.

D.3

Consideremos que

/ eikxx3dx:/ H(z)e " da. (169)
0 —oo

Si definimos f(z) = H(z)2®, entonces nuestro problema puede reescribirse como

(f(z)|e ™). (170)
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Siguiendo el esquema usual, no es dificil ver que

(fith(@) [ ey = &* (f(x) [ e ™), (171)

y por tanto,

(f(@)| ey = ;4 (F50 (@) [0, (172)

Sin embargo, se debe tener cuidado: en este procedimiento estd escondido un detalle teérico crucial. Hasta
ahora, hemos podido aprovechar funciones de soporte compacto para transformar una integral usual en la
aplicacién de una funcién generalizada. Sin embargo, este no es el caso. H(z)z> no se anula fuera de un
intervalo finito. Pero atin asi, como e™** decrece més rapido que cualquier polinomio, sabemos que la integral

/°° H(z)e 23 da (173)

oo

converge. Ademds, como e "¥z®

la, propiedad <f;en ‘g> = - <f
integral puede efectuarse empleando los métodos hasta ahora aprendidos, pero al margen de lo permitido por

tiende a cero a medida que x — oo para k, s > 0, ain podemos aplicar

g’>7 que no es mas que integraciéon por partes. Entonces, en resumen, esta

la teorfa; probablemente lo hizo sin saberlo en el ejercicio anterior (;Puede decir por qué?). Tenga esto muy
claro. Simplemente derivando cuatro veces seguidas a f,

sen(@) = 318(2), (174)
de manera que
(@) &) = L (@) [ ) = 2, (175)
y finalmente .
/ e Mt do = :—i. (176)
0

D.4

Esta integral puede efectuarse facilmente observando los argumentos y el procedimiento del ejercicio anterior.
Basta con tomar f(z) = H(z)z*"! y extender la relacién a

(Fon(@) |7 = (~1)®k* (f(@) | ™) = k* (f@) [ e ), (177)
que resulta en
<f(m) | esz> = is <féi21(x) | 67k1> . (178)
Como
Sen(@) = (s = 1é(w), (179)
entonces o \
/ €7k1$871 dr = (5 ;Sl) . (180)

Para el caso particular k = 1, entonces

/ e "t dr = (s — 1)! (181)
0

de manera que

I(s) = (s — 1)! (182)
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E.1

Olvidemos las constantes por ahora y concentrémonos en

dg. 183
| ot (18)
Notemos que el integrando puede ser reescrito como

1

85— :6_5531—6 s =g Z - (184)

Esta modificacién es vélida para nuestra integral, puesto que la serie converge absolutamente para e < 1; es
decir, 8 > 0. Agrupando, la integral resulta

r

donde el intercambio entre suma y signo de integracién es licito debido a que la suma converge absolutamente

e—‘“”“)dﬂ:Z/ e Pt g3 43, (185)
=0 n=0 Y0

para 8 > 0. Sin embargo, esta integral ya fue calculada: de hecho, es un caso particular del ejercicio D.3, con

k = n + 1. Por tanto,
—B(n+1) p3
dp = 3! — =3 —. 186
S [erestasea Y - a > (150
n=0 n=0 n=1
Esta suma es bien conocida, y su valor es
1
il 187
SESE o

Finalmente, la integral original resulta

7wt omkt
1_3'* c2h3 )

y por tanto, la constante de la Ley de Stefan-Boltzmann resulta

(188)

7o 2k* 2okt
=3 90 2R3~ 15¢2h3 (189)

Este es precisamente el valor de dicha constante.
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Convoluciéon

T.1.A

Para hallar (H x H)(t) basta con evaluar directamente

t
(H*H)(t):H(t)/ 1-1ds = H(t)t. (190)
0
De forma similar,
t
(H * f)(t) = H(t)/ s lds = %H(t)tQ. (191)
0
Evaluando directamente,
t
(H xu)(t) = H(t)/ s* . 1ds = ~H()t* (192)
0
Tomando
t
(g*g)(t) = H(t)/ (t—s)sds = (193)
0
= _H(@t)t* — ZH(t)t? (194)
= —H(t)t? (195)
Es evidente que los resultados no coinciden.
Supongamos que
o(t) = (f*9)(t) = [HO" x HO'] (1). (196)
Derivando n veces la expresion, obtenemos
Gen(t) =nl [H(t) « H(t)t"] (1), (197)
en virtud de la derivada generalizada de una convolucion, y recordando que
ny/ n—1
[H(t)t }gen =nH(t)t" . (198)
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Ahora, si derivamos k veces de nuevo, obtenemos

(R (4) = i k) (H « H) (t). (199)

Derivando una vez mas,
ottt () = nl k! (Hyen  H) (t) = nlk! (6% H) (t) (200)
=nlk! H(t). (201)

Finalmente, y observando la relacién (198]), vemos que ¢(¢) ha de ser

() = mH(t)zs AL (202)
Es decir, ) ) R s
[H(t)t" « H(t)t"] (t) = mH(t)t : (203)
S L] 2
Para hallar G(z) tal que L(G)(z) = §(z), tomemos
G(z) = H(z)g(z). (204)
Con g € C* arbitraria. Como
D(G)(x) = g(0)8(x) + H(x)g'(x), (205)
y ademas
D*(G)(x) = 9(0)8'(z) + ¢'(0)(z) + H(z)g" (), (206)
entonces
L(G)(x) = ¢'(0)d(x) + g(0)d" (x) + H(x)L(g)(x). (207)

Por tanto, para que se satisfaga L(G)(z) = §(x), debe suceder que
9(0)=0, g (0)=1, y Dgx)+\g(z)=0. (208)

Las soluciones de D2g(x) + )\29(23) = 0 son ampliamente conocidas, pues este es el problema del oscilador
arménico. Considerando que g(0) = 0, entonces la solucién buscada es de la forma

g(z) = Csin(Az), C€eR. (209)
La dltima condicién g'(0) = 1 impone que C = A7!, de manera que
1 .
g(z) = Y sin(Ax). (210)

Finalmente,

Gz) = %H(x) sin(\z). (211)

Este resultado estd en perfecto acuerdo con el obtenido en (143)).
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S.3

Supongamos que k # w. La convolucién puede ser evaluada directamente mediante

(h*ﬁgu)zfuw/"J“*%“ds:fuwﬁa/‘fwfmds (212)
0 0
- H(t)e’“w i - (e —1). (213)
Por tanto,
6wt _ ekt ekt _ ewt
(fk*fw)(t):H(t)ﬁ:H(t) Ty FFw (214)

Si k = w, entonces la integral (212)) se simplifica a
t
H(t)e" / ds = H(t)te"" = H(t)te"". (215)
0

Entonces,
(fx * fu)(t) = H()te" = Ht)te®!, k=w. (216)

S.4.A

u'gen puede hallarse directamente como
Ugen (z) = H(z). (217)

Luego, y recordando el resultado del ejercicio vemos que
(H * upen,)(x) = (H * H)(x) = H(z)z. (218)

Parece entonces que la convolucién con la funcién Heaviside sirve para obtener la integral (causal) de una
funcién generalizada.

S.4.B

Sea u una funcién causal, suave a trozos. Basta con aplicar la propiedad de la derivada de una convolucion
para probar esto:
(H = u;en) = (H * u);en = (H;en xu) = (d*xu) =u. (219)

Es decir,
(H * ugen) = u. (220)

Esta relacién es sumamente 1til para la antiderivacién de funciones generalizadas. Mas adelante, en la seccién
de Transformada de Laplace Inversa, se usard un método mas directo.

S.5.A

Esta propiedad puede mostrarse trivialmente mediante
(f(t - a) = g(t))(t) = / J(t—a—s)g(s)ds = (f x g)(t — a). (221)

Aunque parezca insignificante, es una propiedad que permite ahorrar tiempo valioso.
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S.5.B

Primero, hallemos (y * y)(t). Para evitar notacién incémoda, definamos H, (t) = H(t — ). Evaluando,

(H—Hi*H—H1)(t)=(H*H — Hq)(t) — (H1 x H— H)(¢) (222)
= (H=+«H)(t)—2(H x H1)(t) + (H1 =« H1)(t). (223)

Entonces, aplicando los resultados de y ,
(yxy)t) =tH{t) —2t—1)H{t—-1)+ (t —2)H(t — 2). (224)

De nuevo, para evitar notacién incémoda, definamos 7. (t) = (t — a)H(t — «), de manera que (y * y)(t) =
r(t) — 2r1(t) + r2(t). Ahora, consideremos a (y * y * y)(¢):

(yxy*xy)(t)=(r—2r1 +rox H— Hy1)(t) (225)
=(r—2ri+rexH)(t) — (r —2r1 4+ r2 x H1)(t) (226)
= —2ri+rexH)t)— (r—2r1+r2x H)(t —1). (227)
Entonces, basta con calcular
(r—=2ri+rexH)(t)=(rxH)(t) —2(r1 « H)(t) + (r2 « H)(t) (228)
= %tQH(t) —(t—=1)H(t—1)+ %(t —2)%H(t - 2). (229)
Luego,
(r—=2ri+rexH)(t)—(r—2rm+rexH)(t—1) (230)
se reduce a 1 1
Legw = 34— 12 HE— 1)+ 2 —22H(E—2) - Lt —3)2H(t - 3). (231)
2 2 2 2
Finalmente,
1,5 3 2 3 2 1 2
(yxyxy)(t) = §t H(t) — 5(75— 1)°H(t—1)+ 5(75—2) H(t—2)-— §(t—3) H(t —3), (232)

y jamés tuvimos que hacer una sola integral. Aqui puede observarse el gran poder de propiedades aparentemente

inocentes como (221]).

1.0 1.0 1
0.8 0.8 1

= 0.6 = 0.6 .

= )

= *

* >

= *

~ 04r > 04 1
0.2F 0.2 1
0.0 0.0 1

0.0 0. 1.0 5 2.0 3.0 0.0 1.0 1.5 2.0 2. 3.0
t t
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Para hallar u basta con aplicar el resultado de (220)). Es decir,
(H * wyen)(@) = (H *1)(2) = 3(H(2) * o” H(z — 1))(2), (233)

siguiendo la notacién de (225)). El término de la izquierda es sencillo de evaluar, y aunque podria reescribirse
el término de la derecha para aplicar (221) y (203]), es mas conveniente emplear la definicién, pues

(H(z)* 2> H(z — 1)) (x) = H(t — 1)/ s> ds = %H(t -1 - 1), (234)
y por tanto .
(H * Ugen)(x) = ga:zH(a:) — (> —=1)H(t-1). (235)
Finalmente,
w(z) = %xQH(m) (= 1)H({t—-1). (236)

S.7

Para hallar una solucién a la ecuacién basta con tomar la derivada de la expresion
(H # w)gen (t) + tgen (t) = 8(2). (237)
Sin embargo, esta ecuacién es equivalente a
Upen (t) +u(t) = 8(t). (238)
Esta ecuacion ya fue resuelta en la seccién de Derivada Generalizada. Citando el resultado de , vemos que
u(t) = H(t)e™ (239)

es la solucién buscada. Sin embargo, a pesar de que este es un resultado notable, puede obtenerse manualmente
observando que la ecuacién inicial se reduce al problema de hallar el propagador de

L=D+1. (240)

Esta verificacién se deja al lector.

S.8.A

Supongamos que k # w. Para hallar la convolucién, reescribamos

fr(t) = H(t)M = iH(t)e““ - iH(t)e*““ (241)
MU 2 T2 2 ‘
Adicionalmente, para hacer la escritura mas sencilla, definamos
_ 1 ikt _ 1 —1ikt
ve(t) = =H(t)e™, v v_i(t)= =H(t)e ", (242)
21 21
tal que
fr=vk —v_p. (243)

37



Entonces,

(i fo) = (v — vk * V0 — v—y) (244)
= (Vg % V0 — V—w) — (Vok %V — V_y) (245)
= (g *v0) — (Vg *V—w) — (V=g * V0) + (V_k *V_y). (246)

Cada una de estas convoluciones pueden resolverse facilmente recordando (214]). Como todas son exactamente
de la misma forma, solo que con los pardmetros cambiados, basta con resolver una y modificar apropiadamente:

1 ezkt _ eiwt 1 ezkt _ 6iwt
(v * vy,)(t) = _ZH(t)m = —QH(t) (k—w) . (247)
Por tanto, como
(11 02)(0) + (0 30 )(8) = = H (1) (k_w) + L H() (H) (248)
_ _4i(}]€1(j)w) (eikt et (et eii“’t)) (249)
1 . .
= T3k —w) (H(t)sinkt — H(t) sin wt) (250)
= 5= (e = 1), (251)
Yy
1 67”“ _ eiwt 1 eik:t _ e*iwt
(v_k * vw)(t) + (Vi *v_w)(t) = IiH(t) (W) - 4—Z,H(t) <k—|—w) (252)
_ 415(_:‘:)&)) (eikt ikt giet e—iwt) (253)
1
:—m(fk(t)‘f'fw(t))- (254)
Entonces,
(e * £)(0) = 5y (o) = Fe0) + g (e(8) + u(2) (259)
— s (b + @) (Lal0) = o) + (= ) () + £(0) (256)
_ 2kfu(t) —2wfk(t) _ kfu(t) —wfk(t)
= = wz)’“ = ka . (257)
Finalmente,
(fk*fw)(t): kfw(t)_wfk(t) _ wfk(t)_kfw(t)7 ]ﬂ;«éw (258)

L2 _ o2 w2 _ k2
Observe la simetria en los pardmetros; esto no es una coincidencia. Si una funcién arbitraria fr depende
discretamente de un pardmetro k, la forma de la convolucién (fr * f.,) no debe depender del orden en que
se tome, pues (fr * fu) = (fw * fr). Esto también puede observarse en el resultado . Si una convolucién
asi le da una forma particular al resultado segtin el orden en que se tome, puede estar seguro de que se ha
equivocado. Para considerar el caso k = w basta con tomar

kfo(t) — wfr(t)

ksinwt —wsinkt

klfb k? — w? = H(®) klgrolu k? —w? ’ (259)
éste limite puede hallarse mediante la regla de L’Hépital, y
, sinwt—wtcoskt 1 . 1
H(t) ngQJ sy = EH(t) sin wt §tH(t) cos wt. (260)
Por tanto 1 1
(fre * fo)(t) = ﬂfw(t) — iiﬁuw(t)7 k=w, (261)

donde wu, (t) = H(t) coswt.
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S.8.B

Supongamos que k # w. Basta con notar que (fu)yen = Wiw, y POr tanto

(fk * fw)fqen = w(fk * Uw),

de manera que
1
(fk? *uW) = ;(fk * fw);en'

Evaluando, vemos que

L E(fo)gen(t) — w(fi)pen(®) 1 kwuw(t) — kwu(t)
(e % ua)(t) = w k? — w? T w k2 —w?
Finalmente,
(fi * uo) :kM k# w.

k2 — 2 ’

Para el caso k = w, el procedimiento es similar, ahora notando que (uw)’gen =0 —wfu:

(e x 0)(®) = = (5o (Floen®) = 3 0a(®)yen)
_ % (%uw(t) - %uw(t) - %té(t) + %tfw(t))
- %tfw(t).

Por ende 1
(i xua)(t) = 5tfu(t), k=w.

S.8.C

Supongamos k # w. En el mismo orden de ideas, y notando que
(fk * uW);en = k('LLk * uw)»

obtenemos una relacion similar, pues

(k) = - (e % 0
Entonces
(e xu)(t) = SO =lell) 200+ () _ RAY —wfel)
Por ende,

_ Rf(t) — whu(t)

(uk * uw)(t) o2 , k#w
Para el caso k = w, basta con tomar
1/1 w 1 1
(un 0 (0) = 1 (G u®) + Stus®) = 5o Ful®) + G tun(t).

Finalmente,

(e #)(£) = ifw(t) + %tuw(t), k= w.

(262)

(263)

(264)

(265)

(266)
(267)

(268)

(269)

(270)

(271)

(272)

(273)

(274)

(275)
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D.1.A

Para hallar (f % g) basta con tomar la convolucién término a término:

N

(F*9)@) = S (~)"(H(x - 7n)  H(2) sin ) (x).

Como
(H(x —mn) x H(z)sinz)(z) = (H(z) * H(x)sinz)(z — 7n)

= H(z — mn)(1 — cos(z — mn)).

Entonces, obtenemos que

(f*g)(x) = Z(—l)nH(:r —7n) — Z(—l)"H(w — 7n) cos(z — 7n).

D.1.B

Graficando (f % g)(z) para N = 3 se obtiene la siguiente figura:

(276)

(277)
(278)

(279)

4_ -
2_ .
=
/gﬁ (J— -
*
=
-9} -
—4F 4
0 5 10

D.1.C

Como gy, = v, entonces

M=

(f *v)(z) = (f * 9)gen (@) =

Il
o

n

(—1)"H(z — wn) sin(z — mn).

-

3
Il
<)

(=" (6(96 —7n)(1 — cos(x —7n)) + H(x — wn) sin(x — 7TTL))

(280)

(281)
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D.2.A

Para hallar el propagador causal, consideremos el problema

L(G)(x) = (=), (282)
con G(z) = H(x)g(z). Como
D(G)(x) = 9(0)5(x) + H(2)g/(x) (283)
D*(@)(z) = ¢'(0)8(x) + g(0)8' (z) + H(w)g" (x), (284)
entonces
L(G)(x) = g'(0)8(x) + g(0)d" () + Ag(0)d(x) + H (x)L(g)(x)- (285)

De esta manera, vemos que G es el propagador causal de L si g satisface
L(g) =0, g¢(0)=0, g¢'(0)=1. (286)

Las soluciones de
L(g) = D*g+ADg +ng =0 (287)

son ampliamente conocidas, y pueden ser calculadas ficilmente usando los métodos de Matematicas IV. Las
dos soluciones independientes vienen dadas por las raices del polinomio auxiliar y son

exp {z (—;—2)} y exp |:x (—;—!—?)] , (288)

donde A = /A2 — 4n. Por tanto, si

g(z) = Crexp [x (—/2\ — 2)] + Cs exp {1: (—/2\ + 2)} , (289)

con g(0) =0y ¢’'(0) = 1, vemos que C2 = —Cy y C1 = —1/A. Por tanto,

e—)\.'z/2

g(z) = — (eAx/Q - e_Am/Q) . (290)
Sin embargo, si tomamos que
A \/4n — A2
S—ip, p= YT (291)

2 2 ’

podemos reescribir a g(z) como

—Azx/2 ipx _ —ipx :
g(m) = ¢ <€ 2_6 ) _ e—Mc/Q (SIHMx) ) (292)

I i I

Esta forma para g(z) nos ahorra el problema de maniobrar cuando 4n < A? y p resulta en un nimero imaginario.

G(z) = H(z)e /2 <W> - VA= X (293)

1t B 2

Finalmente,

A continuacién se muestran graficas del propagador para distintos valores de A y 7.
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n=4

3/2,

=

G(x),

0.3F
0.2}
o0
I
=
0.1}
B
I
~< 0.0r
/,;:
= 0.1}
O
-0.2F
—0.30—
0
0.4
0.3F
—
I
=
Cﬁ‘ 0.2f
/<
S 0.1t
0.0f
0

D.2.B

0.3

0.1

0.0

-0.1

-0.2

-0.3

0.4

0.3F

0.2F

0.1

0.0f

Busquemos una solucién causal para el P.V.I. Sea K (x) = H(z)f(z). Observe que la ecuacién diferencial puede

escribirse como

L(f) (=),

(294)

donde L es el operador diferencial del ejercicio anterior, con A = 2, n = 2. Entonces, ahora aplicando L sobre

K para hallar soluciones causales, tenemos

Por tanto, la solucién K viene dada por

con

%6@) + 2H (z) cosx.

(295)

(296)

(297)



Es decir,

Evaluando (296)), vemos que
(G(x) * %5(33) +2H(2) cos z)(x) = %G(x) +2(G(x) * H(x) cos ) (x).
Si definimos si(x) = H(x)e"™, siguiendo el esquema empleado en (244)),
1 1
G(z) = 5 (si-1(x) = s-i-1(z)) y H(z)cosz = 5 (si2) +s-i(x)),
La convolucién de la derecha en (299) se torna

2(G(z) * H(z) cosx)(z) = 2%(51;1 —S_i—1%8; + s_)(x)

1
= E(Siﬂ * 8+ 5—3)(x) — S—i—1 % 8; + s—;)(x),

5

Expandiendo, obtenemos

2%_ [(si_l % 8:)() + (si—1 % s—3)(x) — (s—im1 % 85)(x) — (S—iz1 % s_l)(:r)]

Aplicando el resultado de (214),

e(zfl)z _ i

(sim1xsi)(z) = (x)m = H(z)e™(1—e"),
e(i*l)z _ 877@ 6izefz _ e*iz
(sic1xs-i)(x) = H(l’)m = H(x) 2% —1 )
(s s (o) = () i T

—(s—ic1 xs—i)(x) = H(x)e_iz(e_z —-1).

Agrupando inteligentemente los términos,

S [ #50@) = (i £5-0)@)] = 5 [H@eE= (1 - e7) = H@wpe (1 - 7))
_ e _2;% (1-e)

y
1 1 eixe—:v _ e—im e—ize—z _ 6'
57 | (i —i — ($—i—1 %8 = |H - H(x)———
5 (i1 4 5-0@) = (i1 x5 (@)] = 5 [H@ =5 — + Ho)*— 5
Expandiendo,
_é . 2(::) [(2@ +1)(ee " —e )+ (20— 1)(e e T — e”)} ,
i

1 _ _
—gH(m) [sina: +e “sinx —2cosx + 2™ cosx} .
Entonces, juntando (311)) y (315)

2(G(x) *x H(z) cosx)(z) = %H(Jc) (cosx +2sinz —e” “cosz — 3e” Sin:c) ,

43

(298)

(299)

(300)

(301)

(302)
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(304)

(305)
(306)

(307)
(308)

(309)
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(311)

(312)

(313)
(314)

(315)

(316)



1.0

ot

ot

(317)

y finalmente, sumando el término G(x)/2,
1 . —x —x .
(2COS$+4S1D.%'726 cosxfge smx).

K(z) = gH(x)

Este es un ejemplo clasico del oscilador arménico amortiguado y forzado. En vez de usar variacién de pardmetros
para hallar la solucién particular, empleamos el propagador causal para hallar dicha solucién. Note el leve efecto

transitorio para x =~ 0, que es caracteristico de sistemas similares.

44



Transformada de Laplace

T.1

Basta con evaluar

L) (z) = / d(x)e”* dx = <6(x) ‘ efzz> =1. (318)

T.2

De forma similar, basta con evaluar

€

N | =

(1 ~ lfm — ) (319)

e—o0 €%€

L (H) (z):/ H(t)e*ztdt:/ et dt = — lim Le*t
—o0 0

e—00 2

0

El limite 1 1
lim =lim ——, z=o0+iw, (320)

i )
e—o00 €%€ e—o0 €7€eWe

converge a un valor finito (a 0, de hecho) tnicamente si ®(z) = o > 0. Por tanto, la integral inicamente tiene
sentido para R(z) > 0, y tenemos

L(H)(z) ==, R(z)>0, (321)

donde R(z) denota la parte real de z.

S.1

No es dificil hallar este resultado empleando las propiedades de la Transformada de Laplace. Primero, veamos

que como
LA H(t)) (z) = ("H(t)|e ), (322)
y ademads,
(foen@) | e™) = (=D)" (fO) | (=) 2"e ™) = 2" (f(t) [ ™), (323)
entonces
(t"H(t)|e ") = Zﬁl (8(t)|e7) = foil. (324)
Por tanto,
LAHD) () = . (325)
Es decir,

c (H(t)tnl> (2) = = (326)

(n—1) zZ"

Para hallar el dominio de la transformada basta con observar la integral correspondiente.

/ e Pt dt. (327)
0

Esta integral es conocida, y es sabido que converge para R(z) > 0. Entonces,

ol 1
c (H(t)(n_l)!> ()= R()>0. (328)
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La férmula
Tt 1

L (H(t)eat(n_l)!) () = G—am R(z) > o (329)

sigue como consecuencia trivial de las propiedades de la Transformada de Laplace.

S.2.A

Separemos f(t) en sus componentes exponenciales como

1 1

ft) = ZH(t)e“f - ZH(t)e_i“t. (330)
Entonces,
L) (2) = 2%,4: (H()e™) () - %L (H(He ™) (2). (331)
Aplicando las propiedades de la Transformada de Laplace,
L(f)(z):%<zjiw_zjiw):%%’ (332)
y entonces
L(f)(z) = zgiﬁ (333)

El dominio de la transformada puede obtenerse considerando que

/ e sinwt dt S/ |efztsinwt’ dtS/ e "t dt. (334)
0 0 0

Es sabido que esta integral converge para R(z) > 0, y por tanto,

w

L(f)(2) =

Recuerde, el dominio de la transformada es casi tan importante como la transformada en si. Piense en Ma-
tematicas IV, cuando hallaba series de potencias: la serie es inutil sin su radio de convergencia.

S.2.B

Para el coseno, la situacién es similar tanto para hallar la transformada como para su dominio. Sea u(t) =
H (t) coswt. Entonces,

E(u)(t):%(z_liw—i—z_:iw) = R0 (336)
S L] 3 L] A-
Consideremos
L (u'gen) (2) = <u;en(t) { eitz> . (337)

No es dificil ver que
(e (B)] ) = = (wl)]| — 2e7%) = = (u()| 7). (338)
Por ende,
()| ) = = (ul) ), (339

y entonces

L (u;m) (z) = 2L (u) (2). (340)
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S.3.B

Para mostrar esta propiedad, basta, veamos que como
L(u)(z) = / u(t)e " dt,
— 00

entonces

D.L (u)(2) = D. [ T et dt = [ "o, [u(t)e*”] dt,

oo o'}

segun la regla de Leibniz para derivacién bajo el simbolo integral. Por tanto,

L) (z) = / u(t) - —te”* dt = —L (tu(t)) (2),

o]

suponiendo que £ (tu(t)) (z) existe. La férmula

L (#"u(t)) (2) = (=1)"DIL (u) (2)

(341)

(342)

(343)

(344)

resulta trivialmente de la aplicacién sucesiva de (343). Formalmente puede aplicarse induccién, aunque esto se

deja al lector como ejercicio.

S.4.A

Para mostrar la propiedad, veamos que como
oo
L (u(t —t0)) (2) = / u(t —to)e " dz,
— o0

entonces bajo la sustitucién x =t — to, dr = dt la integral resulta

/ u(z)e "0 dp = 70 / u(z)e” " dz.

oo

L (u(t —to)) (z) = e ** / u(z)e ™ dx = e "L (u) (2).

oo

Por tanto,

S.4.B

Si
(uxg)(t) = / u(t - 5)g(s) ds,

[e'e]

L(uxg)(2) _/Z (/Z u(t — s)g(s) ds> e 7 dt.

Suponiendo que la integral doble existe, entonces mediante el teorema de Fubini tenemos

entonces

/:} (/Z u(t — 8)g(s) ds> e dt = /:; /:; ult — $)g(s)e™ dt ds.

Tomando la sustitucién x =t — s, dr = dt, entonces

/ / u(t — s)g(s)e *"dtds = / / u(z)g(s)e *Te™** dx ds.
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Finalmente, y aplicando el teorema de Fubini una dltima vez,

/_Z /_: u@)g(s)e e ™ duds = (/:; u(z)e ™" dw) (/_Z g(s)e” ™ ds) ; (352)

L(uxg)(z) = L(u)(2)-L(g)(2) =U(z) - G(2). (353)

es decir,

S.5

Siguiendo el mismo esquema que empleamos para el seno y el coseno, si reescribimos

£t) = %H(t)e”t - éH(t)e*“, (354)

ﬁ(f)(Z)=%( - )= — (355)

22 — 2

Para hallar el dominio, basta con considerar

sinhwte " dt = = e dt — = e e dt (356)
0 2 Jo 2 Jo

1 el g L e WHIt gy (357)
2 0 2 0

Para garantizar la convergencia de la integral, deben satisfacerse simultaneamente w —#(z) < 0y w+R(z) > 0.
Es decir,
R(z) >w y R(z) > —w. (358)

De aqui que R(z) > w. Finalmente,
L(f)(2) = 55—, R()>w. (359)

Para u, el calculo es completamente analogo, pues

ﬁ(u)(z):l( LI ): . (360)

2\z—w z+Hw 22 — w2

Adem4s, el dominio es el mismo (jpuede decir por qué?). De manera que

L) (z)=——, R(z)>w. (361)

’
ZQ—UJQ

S.6

Para hallar a u, comencemos por tomar la transformada de Laplace a ambos lados.
L (u’gen(t)) (z)=L (6’(16)) () —2L(H(t —2)) (2). (362)
Aplicando las propiedades de la transformada, obtenemos

2L (u) (2) = 2L (6) (2) — 2 **L (H) (2). (363)
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Sea L (u) (z) = U(z). Entonces, obtenemos una ecuacién algebraica en z, pues

2U(2) = 2 —2e %% - é (364)
Esta ecuaciéon se puede reducir a o
U(z)=1- 2‘;2 (365)
Como 1
L) (z) =1, L(tH(t)) () = oL (366)
entonces
U(z) = L(6) (z) — 2 L (tH (1)) (2) (367)

U(z)=L(0)(z) —L(2(t—2)H(t — 2)) (2). (368)
Finalmente, de
U(z)=L(6(t)—2(t—2)H(t — 2)) (2) (369)
obtenemos
u(t) =6(t) —2(t —2)H(t — 2). (370)
S.7.A
No es dificil verificar que si
to(t) + dgen(t) =0 (371)
entonces
L (to(t)) (2) + £ ($gen(t)) (2) =0 (372)
y por tanto, si ®(z) = L (¢) (2),
20(2) — ®'(2) = 0. (373)

Note que esta es exactamente la misma ecuacién, sélo que con el signo que acompana a la funcién derivada
cambiado. Esta ecuacién diferencial es separable, y su solucién se obtiene facilmente como

d(z)=Ce/?, CecC. (374)

El hecho de que la constante pertenezca a C es solo una formalidad de haber resuelto la ecuacién en el plano
complejo.

S.7.B

Normalmente, como es usual de problemas de valores iniciales, bastaria solo con aplicar alguna condicién de la
forma ®(0) = ctte para determinar a C. Sin embargo, justamente no conocemos dicha constante, y es necesario
hallarla empleando la definicién. Entonces, tomemos

®(2) =L (e—"‘/?) (2) = /Oo e P2 gy, (375)

—o0

A pesar de que no sabemos el valor de la constante, realmente no es imprescindible efectuar la integral para z
arbitrario: basta con evaluarla para el z mas sencillo de calcular. Escogiendo z = 0,

B(0) = /m e 2 dt. (376)
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El valor de esta integral es conocido, y es v/27. Sin embargo, su calculo puede efectuarse sin mayor complicacién
2

usando el truco de Fubini para la integral de e™” y el cambio a coordenadas polares (Matematicas V). Por

tanto,

B(z) = V2me /2. (377)

Si se escoge en cambio el camino del sufrimiento y decide hallar la transformada mediante la integral, basta
con completar el cuadrado inteligentemente en el argumento de la exponencial como

t2 1 2 22
E—I—ztfi(t—b-z) -5 (378)
Entonces, la integral se reescribe como
/OO e 27 gt = 712 /Oo e (2?2 gy (379)

Aunque la integral de la derecha parece depender de z, realmente es irrelevante pues la integracién se lleva
acabo sobre todo R; la simple sustitucién x = t 4+ z confirma esto, pues

eZQ/Z/ e/ dt2622/2/ e 12 dg. (380)
— o —o0

Ahora puede apreciarse que la integral de la derecha es exactamente la de (376)). Por tanto,

®(2) = vV2me* /2. (381)

S.8
Si reescribimos

e}

/ e *sinnt dt = / e " H(t)sinnt dt, (382)
0 —

podemos reconocer de inmediato la integral como una transformada de Laplace. Entonces,

* —kt . _ n
/0 & sinnt dt = m, k> 0. (383)

S.9

De forma similar, podemos reconocer de inmediato a la integral como una transformada de Laplace, pues

/ e "% cos® ntdt = / e "H(t)t? cos’ ntdt = L (H(t)t2 cos” nt) (1). (384)
0 —oo
Aqui, la transformada

L (H(t)t2 cos® nt) (2) (385)
puede hallarse tomando

cos® nt = w. (386)

De esta manera, si definimos f(t) = H(t)t* cosnt,

L) (2) = %ﬁ (PH(D) (2) + %c (2 H (1) cos 2nt) (2). (387)
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Paso a paso, la transformada de la izquierda se puede hallar mediante el resultado de (329)),

1 2 1
5L (PH(t)) (2) = = (388)
y la de la derecha mediante las propiedades apropiadas,
1 2 1 2
55 (t H(t) cos 2nt) () = §D L (H(t) cos2nt) (z) (389)
1 2 z
==-D"(— .
2 (z2 + 4n? ) (390)
Efectuando la derivada segunda, obtenemos
2 _ 19p2
1 2( d ) _ e ) (391)
2 22 4 4n? (22 + 4n2)3
Por tanto,
1 2(2% —12n?)
L =4+ ———= RN 0. 392
(NE) =5+ g B> (392)
Evaluando para z = 1, segtin la integral,
1 —12n°
=14 ———.
L(f)(1)=1+ (0T an2) (393)
Finalmente,
P 1—12n2
/0 e "t°cos” nt dt =1 + m (394)
0.6 1 2.0 1
0.5F i N 1.81 ]
™ 3
I = L 1
= 04f ] g 16
=
E 2 o14f ]
Ny 03[ 8 g
S 5]
> = 12r 1
' 0.2F 1
~ 1.0 g
0.1f 8
0.8F 1
0.0 - - : ; ; ; : *
0 2 4 6 8 -3 -2 -1 0 3
t t
Aplicando el resultado de (135)), vemos que
1 ! / 2 1 ’ 2
- ) _2)) = = _z
03r—2)=39 (3 (m 3)) 77° ( 3) (395)
De esta manera,
1 2 —22/3 1 -
a(fa’( - 7>) (5) = S L (8) (2) = ome >/, zeC (396)
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S.11

Emplearemos la definicién, pues el proposito de este ejercicio es justamente aclarar el tema. Tomemos
L (H(m - p)ei”) (2) = / H(x — p)e™ e *" da (397)

Realmente, puede aplicarse primero la propiedad de multiplicacién por exponencial o la de traslacién en x.
Lo importante es entender que aplicar una primero tiene un efecto sobre la segunda. Consideremos por ahora
aplicar la propiedad de producto con exponencial:

/ H(z — p)e™ e *" do = / H(z — p)e” C™"% dg = £ (H(x — p)) (z — iv). (398)
Por tanto, tomando la sustitucién v = x — u, obtenemos

o H(z=iv) / H(u)e—(z—iu)u du = e FGE—W) o (H) (z — iv). (399)

Note que en vez de obtener un término e ** al aplicar la propiedad de traslacién en = obtuvimos un e #*=#),
que corresponde a haber aplicado la propiedad de factor exponencial primero. Coloquialmente, al cambiar el

T

argumento de la transformada con el factor exponencial e®® a z — iv, la exponencial que sale de la propiedad

de traslaciéon debe llevar este nuevo argumento, en vez de z. Ahora, si hubiésemos tomado la sustitucién
u = x — i primero, tendriamos

/ H(u)e™ e e " e™ " du, (400)

es decir,

e / H(u)e™ e " qu = e7 L (H(u)e™ ™) (2). (401)

[e o]

Vemos que al aplicar primero la propiedad de traslacién agregamos un término adicional a la exponencial, que
de hecho es constante y puede salir de la integral. Por tanto

o~ h(z=iv) / H(u)eiuue—zu du = e FE—W) o (H(u)ei"u) (2) (402)
= e " L (H) (2 — iv). (403)

De cualquier manera, el resultado es

. (=)
L (H(ac - ,u)e““) () = ——. (404)

z— v

D.1

Intentemos efectuar la integral empleando nuestro conocimiento sobre transformadas de Laplace. Primero,
veamos que

/ e *sin® kt dt (405)
A

puede ser reescrita en términos de una transformada de Laplace, pues

/ et sin® ktdt = / e P'H(t — N sin’ ktdt = £ (H(t — \) sin® kt) (3). (406)
A —o0
Trataremos entonces de hallar -

/ e P'H(t — \)sin® kt dt (407)
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para luego evaluar en z = 3. Obviamente no sabemos la transformada de H(t)sin® kt. Sin embargo, sabemos
que se puede reducir sin® kt a una combinacién lineal de senos y cosenos (una aplicacién usual de la férmula
de De Moivre en Matemédticas VI). En efecto,

sin® 2z = (le" — i67i1)3 (408)
24 21
1 3ix 3 T 3 —ix 1 —3ix
_ 1 3 3 1 409
8¢ T8 T8 TE° (409)
_3 sinz — 1 sin 3z (410)
4 4 ’
Entonces,
1
sin® kt = Z sin kt — 1 sin 3kt. (411)

Ahora, podemos deshacernos de la traslacién en la Heaviside: tomando la sustitucién u =t — X,

/DO e ' H(t — \)sin® ktdt = e ** /Oo e *“H(u) sin® (ku + k) du (412)
= e AL (H(u) sin® (ku + k) (2). (413)

Ahora si podemos hallar la integral original en términos de transformadas de senos y cosenos, pues como

sin® (ku 4 k) = % sin(ku + kX) — i sin(3ku + 3k\), (414)
cada seno puede separarse tranquilamente y lo que queda por hacer es mera carpinteria. Veamos pues que, si
definimos

Ae = cos kA, As =sinkA, (415)
e = cos 3k, Ws = sin 3k, (416)
entonces 3 3 3
1 sin(ku + kX)) = 1/\C sin ku + Z/\S cos ku, (417)
Y 1 1 1
1 sin(3ku + 3k\) = qHe sin 3ku + Ha cO8 3ku. (418)

Por tanto, si definimos (solo para ahorrar en escritura) fn(u) = H(u)sinnu, g,(u) = H(u) cos nu,

£ (H(u)sin® (ku + k) (2) = %AC L0 (2) + %)\S £(g) ()

— e £ (k) (2) = s £(gar) (2). (419)

Cada una de estas transformadas es conocida, y

. 3 7%( Ak AsZ )7§< ek 1 sZ )
L (H(u) sin” (ku + k)\)) (2) = i\ =i + e im0 + 377 1 02 (420)
3 Ak As?Z ek 1 psz )
=2 - - . 421
4<z2+k2+z2+k2 22 +9k% 32249k (421)
Por tanto,
o .3 3e~** Ack AsZ ek 1 sz
e L (Hwsin (ku+ ) (2) = = <z2—|—k2+z2—|—k27z2—|—9k‘27§z2+9k2)’ (422)

con R(z) > 0. Finalmente

a3 3e73* ( Ak 3\e ik 1 3. )
Kt dt = - 1 12
A ¢ s 1 \9+m "o R T 0rok2  39t9k2) (423)

con 0 < A < oo, k€eR.
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D.2

Hallar esta transformada es en realidad bastante sencillo con la mentalidad apropiada: como

# = Z(—l)"eint, cont >0, (424)
n=0
entonces -
1 n _—mn
f0) = HO) = = HO Y ()" (425)
n=0

estd perfectamente bien definida, y

_ — _1\" —nt _ = (_1)”
L(f)(2) = ZO( V"L (H(t)e ™) (2) = Z:O - R(2)>0. (426)
En efecto, a pesar de que la transformada de f no es inmediata, la de
ktf(t) = H(t)sinkt (427)
es conocida. Entonces, tomando la transformada de ambos miembros,
RL(F(D) (2) = oy (428)
T2 4k
es decir,
1
D.L(f)(2) = TR (429)
De aqui, que
LOf)(2) = —% arctan (%) +C (430)

Si: es importante que no olvide la constante de integracién. Esta puede hallarse calculando £ (f) (0) como en

(376)). Tomando

oo .

L)) = / LI (431)
o kt

reconocemos de inmediato a la integral de la derecha como la integral de la funcién sinc(z), que no posee

antiderivada en términos de funciones elementales. El valor de esta integral puede ser consultado, y es 7/2k.

Sin embargo, el calculo de dicha integral no es complicado. Con esto en mano,

C = % (432)
y finalmente
L)) =g - %arctan (%) . (433)
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D.4.A

Consideremos u(t) = H(t)Jo(t). La primera y segunda derivada de u vienen dadas por

Ugen (t) = 0(t) + H()T5(t)

Ugen (t) = 0'(t) + H()Tg' (1).

Por tanto,
Pl (1) + tuen () + t2u(t) = 26" (t) + t5(t) = 0,

en virtud de (106)). Entonces, u satisface la ecuacién diferencial

Ul (1) + tulge, () + tu(t) = 0.

Tomando la transformada de Laplace de ambos miembros, tenemos que
L (Pugen(t) (2) + £ (tugen () (2) + £ (Fu(t)) (z) =0,

y entonces que

D? [zza (w) (z)] -D [zz (w) (z)} + D? [z: (w) (z)} —0.

Reescribiendo la ecuacién anterior, vemos que

D2 [(22 + 1)L (u) (z)} =D [zﬁ (u) (2)} ;

es decir, que
D [(22 + 1)L (w) (z)} — 2L (u)(2) +C1, CeC.
Sin embargo, como £ (u) (0) = 1y £ (u)' (0) = 0, entonces
22L (u) (2) + (2> + 1)L (u) (2) = 2L (u) (z) + C1  paraz — 0
se reduce a
C1 =0,

De manera que
22L (u) (2) + (2° + 1)L (w)' (2) = 2L (u) (2)

y por tanto,
(22 + 1)L (u) (2) = —2L (u) (2).

Esta ecuacién diferencial puede resolverse facilmente tomando

pues entonces

y de aqui, que

&
U(z) = .
()= 7= 0
Finalmente, como £ (u) (0) =U(0)=1,Cy =1y
() = ——
S VIF2
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(435)

(436)

(437)

(438)

(439)

(440)

(441)

(442)

(443)

(444)

(445)

(446)

(447)

(448)

(449)



D.4.B

Veamos que

/t Jo(s)To(t —s)ds, t>0 (450)
0
es equivalente en definicién a )
H(t) / Jo(8)To(t — s)ds, (451)
0
que no es mas que
(u*u)(t), (452)

segtn la convencién del ejercicio anterior u(t) = H(t)Jo(t). Tomando la transformada de Laplace de la convo-
lucién, podemos observar que

ﬁ(u*u)(z)—E(u)(z).[,(u)(z)_(\/11722) :leQ. (453)

Inmediatamente reconocemos a esta expresién como la transformada de H(t)sint. Por ende, tenemos que

L(uxu)(z)=L(H(t)sint) (2), (454)
y entonces que .
H(t)sint = (u*xu)(t) = H(t) / Jo(8)Jo(t — s) ds; (455)
es decir, .
sint = / Jo(8)Jo(t —s)ds, t>0. (456)
E. 1 L] A.
Si
u(z) = H(z + L) — H(x — L)e™, (457)

entonces, empleando el resultado de (404)),

eLGz—ik)  ,—L(z—ik) eL(z=ik) _ ,—L(z—ik)

£(u)(2) = z—ik  z—ik z—ik ' (458)

E.1.B

Tomando z = iw, _
1 bWk _ pmib(w=k) _ 2sin(L(w — k))

L (u) (zw)z;- T = O . (459)
Tomando
T
g=w= T, (460)
entonces of si ( L)
sin (o
L (u) (iw) = I (461)

E.1.C

En la pagina siguiente se muestran las graficas.
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Recordando (329)), se verifica trivialmente que
L(rj) (2) = R;(2), (462)
pues
N bt N bt
« _ aj
L H(t) cjre’ %=1 (2) = cikl <H(t) g = 1)') (2) (463)
k=1 k=1
N .
- ik (464)
ok’
k=1 (z =)
en virtud de (329).
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E.2.B

Escribiendo a 1 de forma inteligente, vemos que

etz et etze—ajt _ eajt e(z—aj)t
(z — )" (z —ay)* (z — )"

Entonces, empleando la serie de Laurent

tz i " n—k
=0

=)
2k nl
n

obtenemos una serie de Laurent andloga para (465) alrededor de «;

oot ezt _ oot Z t"(z—a;)" "
(z — aj)k n!
n=0
Véase que el coeficiente que acompana al término
1
z—aj’
es decir, el residuo, es
k=1
P A —
(k—1)!
Para extraerlo basta con buscar el coeficiente del término con n — k = —1. Finalmente,
tz k—1
e ait t
Res | ————; aj | =9 ——.
((Z—Ocj')k a]> c (k—1)!
Como . -
e” . ait T
Res<(2_a)k,aj> eJ(k—l)"
entonces
Ni tz N tz Nj k—1
e Ccike ast t
cjrRes ; aj | = Res J aj | = cjre ,
jk (( _a)k J> ( (Z—Oé)k J> Z ik (k—l)'
k=1 k=1 k=1
es decir,
: o .t
Res (e R;(2); a]) :chke =1
k=1
Por tanto, se obtiene que
Nj Lokl .
ri(t) = H(t) ;Cjke I (= = H(t)Res (e R;(2); Oé]') .

(465)

(466)

(467)

(468)

(469)

(470)

(471)

(472)

(473)

(474)

Ahora, como e R;(t), por su misma definicién, no tiene singularidades en a; a menos que i = 5, entonces

Res (etsz (2); aj) = Res (etzR(z); O[j)

(475)

pues el residuo de cada término de la suma en R(z) da cero, a menos que sea el j-ésimo. Es claro que la parte

(476)



de R(z) puede generarse con deltas y sus derivadas tomando

No
> ad® (),
k=0
y en virtud de (475)), la parte
P N1 c N2 c
Ry(2) = 1k n 2k "
2O ey T Gy

puede ser generada con

H(t) ZRes (etsz(z); Oéj) = H(t) Z Res (etzR(z); aj) .

Por tanto, el resultado principal que se deseaba obtener es

No

k=0

r(t) = exd™ (&) + H(t) ) Res ("R

Una reescritura conveniente es la siguiente: en realidad,

Res (etzR(z); a)

(2); o).

(477)

(478)

(479)

(480)

(481)

es cero, a menos que e'*R(z) tenga alguna singularidad no removible en o € C. Entonces, basta con sumar

sobre todas las singularidades posibles de e'* R(z). Es decir, podemos sumar sobre todos los a € C; los tinicos

términos que no den cero seran aquellos que correspondan a singularidades no removibles de e**R(z), y nos

olvidamos de indexar las singularidades tomando

No

r(t) = exd™ (&) + H(t) Y Res (¢ R(2); a).

k=0 acC

(482)
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Transformada Inversa de Laplace

S.1.A

Basta con tomar la transformada término a término. De aqui, que

z 1 224221
= —_ = . 4
£ () Z+22+1 22 +1 Z22+1 (483)
Véase que, tomando £ (u) (z) = U(z),
2 _ 224221 2
tiene singularidades no removibles en z = +i. Dado que los polos son simples, pues
34221 f+22-1
Fcele Aol (485)
2241 (z+19)(z—1)
los residuos en z = £i pueden ser calculados facilmente mediante
Res (f; ¢) = lim(z — ¢) f(2). (486)
z—cC
Evaluando el limite para z = &+, obtenemos que
Res (e"“U(z); i) = (1 — l) e’ Res (e”U(z2); —i) = (1 + i) e " (487)
’ 2 2 ’ ' 2 2
Por tanto,
L 1 i 1 4 1_“) .
= H = st R — =H — H(t t. 4
u(t) (t)(Qe +aeTt— et e (1) cost — H(t)sin (488)

Es claro que falta el término &'(t), y que este resultado no coincide con el anterior.

S.1.C

Los resultados no coinciden porque hemos saltado por alto una observacién crucial. Para hallar la férmula que
emplea el residuo tomamos que cualquier funcién racional

ao + a1z +ax2® + - Fanz™

Re) = bo 4+ b1z 4+ baz? + - - - + b2 (489)
tenia una descomposicién de la forma
ol ol c ok c o c
R(z) = ;ckz’“ - ; Gt ; TeF T ; Erw _”gp)k, (490)

con N1 + Nz + ---+ N, = [. Sin embargo, y esto pudo calcularse sin mayor complicacién en E.2, la formula
del residuo

H(t) Z Res (etzR(z); a) (491)

acC
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corresponde tinicamente a la funcion causal que genera la parte

ol c ok c o c
E R D D s (492)
; (z—a)k £ (2 - az) ; (z —ap)*
de la descomposicién. Es decir, con esto no pueden calcularse las funciones que corresponden a
No
Z crz” (493)
k=0

al aplicar la transformada. En términos maés elementales, esto nos lleva a una conclusién sencilla. Los términos
cxz® de la descomposicién aparecen cuando m > I; es decir, cuando el grado del numerador es mayor que
el del denominador. Entonces, para usar la formula del residuo sin perder la cabeza, es conveniente aplicar
division larga hasta lograr que el grado del numerador del cociente resultante sea menor que el
del denominador, a manera de calcular por separado las distintas partes: por un lado, las funciones que

corresponden a
No

Z crz” (494)
k=0
se hallan sin mucha dificultad reconociendo los términos como la transfomada de derivadas de la delta, y por
el otro lado calculando las que corresponden a

Ny No Np
Cik C2k Cpk
___pr 495
;(zfal)’“—’—;(zfag)k—i_ +;(zfap)k (495)

con la férmula del residuo.

S.2

Sea G(z) = L (g) (#). Tomando la transformada a ambos lados,

£ (ggen) (2) = L (8) (2) + L(H) (2), (496)

obtenemos 1
2G(z) =1+ =, (497)

y por tanto, ?
G(z) = Z;l- (498)

Hallar a g por tablas seria muy sencillo. Vayamos por el camino largo: como el numerador de G(z) es menor que
el denominador, podemos aplicar la férmula del residuo sin contemplar términos adicionales. Preparandonos
para aplicar la férmula, vemos que G(z) tiene un solo polo de orden 3 en z = 0. Entonces, para no entrar en
complicadas férmulas de derivadas, basta con hallar la expansién de Laurent alrededor de z = 0 y extraer el
residuo. Como

. 2 S T BN
o) =(gra) = (mta) X (499)

n=0
oo tnzn72 e tkzk:73
= o+ > T (500)
n=0 k=0
De aqui, que el término con z~! viene dado por
1.\1
t+=t") - 501
(t+5¢) > (501)
y entonces
1
Res (etzG’(z); 0) =t+ 5752. (502)
Finalmente,
1
g(t) = H(t)t + §H(t)t24 (503)
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S.3

Note que, de entrada, la ecuacién puede reescribirse como
y Ly (501)

Esta es la ampliamente conocida ecuacién del oscilador arménico; a estas alturas, ya deberia tener una idea de
c6mo ha de ser la solucién. Empecemos por suponer una solucién causal. Sea u(t) = H(t)y(t) y U(z) = L (u) (2).
Entonces, como

Ugen (t) = H(t)y' (1) (505)
Y 2
Ugen (t) = —730(8) + H(t)y" (1), (506)
entonces 1 9
Upen (t) + pu(t) = —ﬁé(t). (507)
Tomando la transformada de Laplace a ambos miembros, vemos que
£ (uhen) (2) 7L (1) (2) = — 5 L) (2) (508)
y entonces, la ecuacién pasa a ser
22U (2) + k%U(z) = —%, (509)
o bien
E22U(2) + U(z) = —2. (510)
De aqui, que
Ulz) = k2222+1 - (kz+i)(2kz —0) % (kzl-i-i - kzl—i) (511)

1 1 1
= — - . 512
De aqui podemos conseguir directamente a u(t) mediante transformadas de tabla como

1 —it/k it 2 .
u(t) = = (H(t)e ™* — H(t)e'™") = — T H(t)sin(t/k). (513)

S.4

Intentemos hallar una solucién causal al problema. Supongamos que u(z) = H(z)y(z). Entonces, como

Ugen (2) = H(2)y' (2), (514)
pues y(0) = 0, tenemos que
TUen (z) +u(z) = H(x)zsinz. (515)
Note que
(;L’u(x));en = xu;en(x) + u(x). (516)

Esto permite reducir el problema considerablemente pues ahora
(zu(z))yen = H(z)zsinz. (517)
Tomando la transformada de Laplace de ambos miembros,

L ((a:u(:c));en) (2) = L(H(z)xsinzx) (2), (518)
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—:D [c (w) (z)} - D [z (H(z)sinz) (z)]. (519)
Si definimos U(z) = £ (u) (z), entonces N
—2U'(2) = ErE (520)
De aqui, que
U'(z) = —ﬁ. (521)

En este punto, hay dos caminos a seguir: el primero es integrar en z para hallar U(z) y luego hallar u(z),
mientras que el segundo es aplicar directamente el método de los residuos a —U’(z) para hallar zu(z), y luego
despejar, pues L (zu(z)) (2) = —U’(2). Seguiremos ambos, y luego compararemos los resultados. Integrar para
hallar a U(z) no es complicado. Tomando la sustitucién z = tan 3 vemos que

2 2

— — 2 .
dU = EFS)E dz = Gan? 1 172 sec” Bdp; (522)
Es decir,
—dU = 2cos’® BdB. (523)
De aqui, que
—dU = (14 cos2p) dg, (524)
y por tanto, .
U(z) = —arctanz — o +C. (525)

Conocemos cada una de las funciones que generan a estas transformadas, incluso la de la arcotangente, gracias

a (433). Entonces,

sinx

u(z) = H(x) (

Note que aqui hemos absorbido el término 7/2 de la transformada de sinz/x en la constante arbitraria C.

—— —cos x) + Co(z). (526)

Finalmente, para obtener la solucién deseada, debemos hallar el valor de C. Esto se consigue sustituyendo a u

en (515)) de forma que si

Tuye, (z) = 2(z) (sizx — cos m) +xH(z) (w + sin ;c) + 206 () (527)
= H(x) (cosm — SI% + xsin x) — Cd(x), (528)
entonces
TUpen (T) + u(z) = H(z) (cosx - % + xsin:c) — Cé(x) + H(x) (sinm - cosx) + Co(x) (529)
= H(z)zsinz. (530)

Vemos que la ecuacién se satisface independientemente del valor de C'. Por tanto, podemos tomar libremente
C=0,y

u(x) = H(x) (sn;x — cos x) . (531)
Ahora, retrocedamos a
2
/ f—

Procederemos a hallar zu(z) usando el método de los residuos. El denominador de la expresién puede reescri-

birse para obtener
2

EEnEEETE

De aqui, es claro que U(z) tiene dos polos de segundo orden en z = =+i. En vez de intentar aplicar alguna

~-U'(z) = (533)

férmula para hallar el residuo de
263')2

(EEDEEEE o
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en polos de segundo orden, confiaremos en nuestras habilidades para encontrar la expansiéon de Laurent alre-
dedor de z = 4+i. Comencemos por tomar

p=z+1i, pu—20=z—1. (535)
Entonces, si R(z) = —U’'(z),
Qe @M 1 e eTH 1
R, = , _ . . 536
S N vy BV B M (536)
Sin embargo, como
1 1 1
Dy| —= | ==+—""7 537
# (1 - p/2i> 2 (1 — pu/20)2’ (537)
tenemos que
ie et 1
Tz — _ D .
€ R(z) 2 n (1 — /22) (538)

Como hallar la expansién de Laurent alrededor de u = 0 es equivalente a hallar la expansién alrededor de
z = —i, tenemos que

e R(z) = —ie ™ (Z ”T) : (Z %ﬁf;) . (539)

n=0 k=1

Hallando los primeros términos de cada serie,

e [ 1 xz x? 1 m 3,u2
— e (lﬁ+ﬂ+2+“.).(2i_2_81“. . (540)

De aqui, vemos que el término en p~ ' resulta

—e ™ 1

——=]. 41

I (2i 2) (541)

Es decir, el término en (z 4+ 4)~" de la expansién de Laurent de (534) alrededor de z = —i es

—ie”® rx 1

——=]. 542

z+1 <2z' 2) (542)
Por lo tanto, _

Res (" R(z); —i) = — < 5 (—ita). (543)

Mediante un célculo completamente andlogo para z = ¢, obtenemos que

—ix

Res (6" R(2); i) = ——— (i + ). (544)
Entonces,
zu(z) = H(x) Z Res (e"*R(2); «) (545)
aeC

— H(z) [e: (ita) - S G+ m)} (546)
= H(z)(sinz — zcosz). (547)

Finalmente, )
u(z) = H(z) (su;m — cos x) , (548)

tal y como obtuvimos integrando y tomando la constante arbitraria como nula. Esto sirve para ilustrar que hay
varios caminos para obtener la solucién deseada; no necesariamente teniamos que integrar. Si la integral no
viene a la mente, hallar los residuos directamente era un posible camino. Si no desea arriesgarse equivocandose
al manipular la expresion para extraer el residuo, integre y utilice las transformadas conocidas, de ser necesario.
Ejercite su habilidad de hallar caminos alternativos al resolver problemas; ésta le sera ttil en el examen y en
su carrera profesional.
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S.5

Podemos hallar a u tomando la transformada de Laplace de ambos miembros y aplicando las propiedades:
L (ugen) (2) = L(H(t —m)) (2) + 2L (8") (2) + 4L (§'(2 — 1)) (2). (549)
Si tomamos U(z) = L (u) (z), entonces obtenemos

—Tz

e

22U(z) = —+ 227 — dze %, (550)
recordando que §’'(—s) = —4’(s). De aqui, que
efwz 46722
U(z) = — 2 - 551
(5)=—7+ - (551)
Aplicando los teoremas operacionales, podemos hallar a u como
1
u(t) = SH(t—m)(t - )2 +26(t) — 4H(t — 2). (552)

Este es un ejercicio que bien puede lograrse en menos de cinco minutos, teniendo en claro las propiedades
fundamentales de la delta de Dirac y la Transformada de Laplace.

S.6

De forma similar, la estrategia serd usar la transformada de Laplace para convertir la ecuacién diferencial en
una ecuacién algebraica. Sea F(z) = L (f) (z). Tomando la transformada de ambos miembros, tenemos

L (f;'m) () =L (H(t)tefgt) (2)+ L (H(t)tge%t) (z) + L (9) (2), (553)
| 2
2°F(z) = (z+2)2+(2+4)3+1 (554)

en virtud de (329). De aqui, que

1 2 1
F(z) = =+ —. 555
(2) 22(z+2)? + 22(z+4)3 * z? (555)

En este punto hay dos maneras de proceder: la primera, tomar
24 172% 4+ 1012° + 162* + 2°
F(z):3 + 500z + 3172 4+ 1012° + 162" + 2 (556)
22(24 2)2(4+ 2)3

y encomendar a Jesucristo la ardua tarea de hallar los residuos en z =0, 2 = —2 y 2z = —4. La segunda, es ir

término por término. Si pensamos en funciones Ri, Rz, y Rs3 tal que
Ri(z)= — Ra(s)= -2 Ra(z)= - (557)

T R+ 2)2 T 2y VYT

entonces podemos hallar funciones r1, r2 y 73, cada una por separado, que generen a Ri, Rz, Rs, respectiva-
mente. Esto es muchisimo mas facil que el mecénico procedimiento de juntar todo en una sola funcién racional
y hallar los residuos. Comencemos por hallar r1(t).

= Hallando r(¢): Tal y como hemos hecho en ejercicios anteriores, buscaremos los residuos de
6tz

tz _
¢ Ri(z) = z22(z+2)?"

(558)
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Es claro que e** R1(2) tiene polos de orden 2 en z = 0 y z = —2. Por tanto, y una vez méas evadiendo
las férmulas para residuos, hallaremos las series de Laurent de e** Ry (z) alrededor de z = 0y z = —2
para encontrar los residuos. Comparando con (536)), vemos que

etz etz 1
———=———D | — . 559
22(z+2)2 222 1—(-2/2) (559)
Expandiendo alrededor de z = 0,
2 1 /1 t 2 1 2z 322
R =5l at gt e ta T T ) (560)
y observamos entonces que el término en z~! resulta
1 1/1 ¢
2 z (2 2) (561)
Por tanto,
1
Res (etle(z); O) = Z(t —1). (562)
Ahora, hallemos el residuo en z = —2. Tomando p = z + 2,
ert

e"Ri(z) =e % (563)

p2(p—2)2
Vemos que con la sustitucién, la expresién es exactamente idéntica, salvo por el factor e ¢ y el signo
(). Por ende, expandiendo alrededor de u = 0, que es lo mismo que z = —2, llegamos a directamente
al resultado, muy similar salvo por el signo menos que desaparece,

—2t 2 2
tz e (L v ey (e 3
“Ri(2) = 5 <H2+M+2+ > (2+2+8+ , (564)
y de aqui que
—2t
Res (" Ri(2); —2) = 64 (t+1). (565)
Entonces,
() = iH(t)(t 1) iﬂ(t)e”f(t +1). (566)

Hallando r2(t): Para

2
== 7
Ra(2) = Sy (567)
la situacién es similar, solo que ahora hay un polo de orden 3 en z = —4. Sin embargo, ésto no hara al

célculo mas complicado. Hallemos el residuo en z = 0. Como

2 1 8
b (1 - (—z/4)) BECETIE, (568)

entonces . .
s . 2e** . i Py 1
¢ Rez) = mo s ~ 2P (1 - (2/4)> ’ (569)
Expandiendo alrededor de z = 0,
e”R(z)—1 iJrerﬁJr 1f¥+£+ (570)
Mg\ T2 2 8 32 64 '

De aqui, y en forma completamente andloga a los casos anteriores, extraemos el residuo del término en
27t y
Res (etzRg (2); O) = L(475 —3). (571)
128
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Para z = —4, tomemos la sustituciéon s = z + 4. De esta manera

¢ Ry(z) = et 2¢ (572)
S s3(4— )2’
Ahora, la expansién alrededor de s = 0 (es decir, z = —4), resulta en
e Ra(z) = e ¥ <t (573)
PETE 93T \(1-s/4
e (1 t 2 3 1 s 35
sttty ) atsta (574)
El término en s~ ' es entonces " )
1 e 3 t t
52 (sﬁs*s)’ (575)
y por tanto,
—4t
[tz . _ € 2
Res (¢ Ra(2); —4) = 5o (348 +8t7). (576)
Finalmente,
1 1 —at 2
t)y=—H(t)(4t — —H(t t t7).
r2(t) 128 (t)( 3)+128 (t)e” (3 + 8t + 8t%) (577)

= Hallando 73(t): 73(t) se obtiene trivialmente de los teoremas operacionales de la transformada, pues

1
LH@)) () = - (578)
Entonces,
rs(t) = H(t)t. (579)
Finalmente, juntando todos los resultados anteriores,
F@&) =r1(t) + ra(t) + ra(t). (580)
Es decir,
£ = SHO(E - 1)+ SH(e (1) + — H()(4t - 3)
4 4 128
+ %SH(t)e_“(Zﬂ + 8t + 8t%) + H(t)t. (581)

S.7

Sea U(z) = L (u) (2). Tomando la transformada de Laplace podemos reescribir la ecuacién original a una més
sencilla en el dominio z, pues

Lut+a))(z)+L(u)(z) =L+ @) () (582)
resulta en
U(z)e™ +U(z) = e™*. (583)
De aqui, que o
U() = — — (584)



Pero como

eaz 1 G n_—moaz
s il g ZOH) e R(2) >0, (585)
entonces -
Uz) =Y (-1)"e ™, R(z) >0, (586)
n=0

y u(t) puede obtenerse directamente observando que

L6t —na)) (z) =e " (587)
Finalmente,
u(t) = Z(q)%(t — nao). (588)

S.8

Efectuar ésta convolucién no seria muy complicado empleando las propiedades de la convolucién, como en el
caso de (|196]). Sin embargo, aqui procederemos con la transformada de Laplace. Observe que como

L(H)(z)=—, (589)
entonces
1\2 1
L(H*H)(z) = (7) -1 (590)
Aqui hemos tomado una convolucién. Si repetimos esto n veces, entonces es facil ver que

C(H*Hx- % H)(2) = (%)n“:

1
2n+1"

(591)

Finalmente, y en virtud de (329),
(592)

donde el nimero de convoluciones es n.

S.9.A

Sean G(z) = L (g) (2) y U(z) = L (u) (z). Para resolver la ecuacién usaremos las propiedades de la transformada
de Laplace: tomando la transformada de ambos miembros, obtenemos

G(2)U(z) + \U(z) = 0; (593)
es decir,
U(z)(G(z) + ) =0. (594)

En particular, si u es conocida y su transformada no es idénticamente nula (U(z) = 0, Vz € C), entonces la
ecuacién anterior inicamente se satisface si
G(z) = -\, (595)

que a su vez implica
g(t) = —A6(2). (596)
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S.9.B

Este caso es ligeramente diferente, pero la estrategia es la misma: tomando la transformada de ambos miembros
de la ecuacién, obtenemos
G(2)U(z) + A\U(z) = BG(=), (597)

de donde AU (2) N
=5 U TR -1 (9%

Ahora, como
1

2241’

U(z) = (599)

entonces
A A 1

TB2+B—-1 B2A1-p 1

En este punto, no puede dejarse llevar por el pensamiento mecénico de intentar hallar los residuos de e"*G(z);

G(z) (600)

hay una forma mas sencilla. En particular,

A 1 A V1-p7"
CGE)=gayi—g1 T+ =B (601)

VI
-0 (602)

puede reconocerse de inmediato como la transformada de Laplace de

H(t)sin (Wt) . (603)

Por tanto, y sin tener que hallar residuo alguno,

La funcién racional

g9(t) V1= 6—11%) : (604)

A .
= WH(!&) sin (

Una gréfica para A = 1, § = 2 se muestra a continuacion.
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S.10

Podemos hallar a u a través del método de los residuos sin mayor complicacién. Antes que nada, veamos que

24—2z2+17 B 422
24422241 244222 417
Entonces,
422
L =1- —— .
() (2) AT o241

Ahora si podemos aplicar el método de los residuos; propiamente, (482)). Sean

422

RG) =1, R(2) = amaaT

Hallemos las funciones r1(t), r2(t) que generan a éstas por separado:

= 71(¢): Se obtiene trivialmente como r1(t) = §(¢).

= ro(t): Para hallar a ro(t) comencemos por factorizar el denominador. No es dificil notar que

A2 +1=(+1) ==+ (z—0)>

Entonces,
42°

B CE 2 e

(605)

(606)

(607)

(608)

(609)

Podemos ver que R: tiene polos de orden 2 en z = Zi. Procederemos hallando las expansiones de
Laurent alrededor de las singularidades para extraer los residuos de e'*R2(z). Sea 1 = z + i. Entonces

ekt _ )2 L out 1 -\ 2
€ Ra(z) = de~t & W= € (ZL /i) (610)
p? (p—2i) p? (1 —p/2i)
Recordando que
1 1 1
Dy(— = - 611
“(1—u/2i) 2i (1 — p/2i)?’ (611)
tenemos
e Ro(2) = 2z‘e*“e—m(—1 + u/i)’D N (612)
T (2 a P\ —p/2i )
Paso a paso, y expandiendo alrededor de p = 0, como
e 1t 2 utd
e it v, 613
e u2+u+2+3+ (613)
1 1 wo 3p® b
Dyf——m)==-C2_22 L2 4 .. 14
“(1—u/2z‘> 22 s 4 (614)
m 2
(;—1) — 14 2ip— 1%, (615)

entonces, multiplicando los términos uno a uno y luego agrupando en p~!, vemos que el término en

! resulta

1. & (1 t ) |

~9 Sty == 11). 1

. ie 5T 5 Me (i+¢) (616)
Por ende,

Res (etsz (2); —i) =e (i +1t). (617)

Ahora, hallemos el residuo en z = i. Tomemos s = z — i, de forma que

we (s+i)® et (145/i)?

tz =4 2t S A
¢ Ra(z) =4 T T T ¢ S (11 s/2)

(618)
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De manera completamente andloga a la anterior, expandiendo alrededor de s = 0, encontramos que el

término en s~! de la expansién de Laurent es

%e“(fi +1). (619)
Por tanto,
Res (etZRz (2); 2) =e"(—i+1t). (620)
Juntando los resultados, obtenemos entonces
ro(t) = H(t) [e"(—i+t) +e (i +1)] (621)
= H(t)(2sint + 2t cost). (622)
Finalmente, juntando 71 (¢t) y r2(t),
u(t) =6(t) — H(t) (2sint 4 2t cost) . (623)
Intentemos hallar una solucién causal al problema. Sea u(t) = H(¢)y(t). Como
Ugen (t) = =0(1) + H()y' (¢), (624)
Ugen (t) = =0 (t) + H(t)y" (1), (625)
Ugen(t) = —6"(t) + 0(t) + H(t)y" (¢), (626)
entonces
Ugen () +u(t) = =38 (t) + 6(t) + H(t)t. (627)
Tomando la transformada de Laplace de ambos miembros,
L (ugén) (2)+ L(u)(2)=-L (6") (2) + L(0) ()L (H(t)t) (2). (628)
Cada una de las transformadas es sencilla de calcular, y obtenemos
3 2 1
2°U(z) +U(z) = —= +1+Z—2. (629)
De aqui, que
1-2° 1
Uz) = 254+1 0 22(23+1)° (630)
Nuevamente, conviene emplear el esquema de calcular las cosas por separado. Sean
1-2° 1
= —— - _— 1
Ra(2) 2417 Ra(2) 22(23 + 1)’ (631)
y 71, r2 tales que
L(r1)(z) = Ra(z), L(r2)(2) = Ra(2). (632)
Hallemos r1, 72 para luego juntarlas y obtener a u(t).
» 71(t): no es dificil ver que los ceros de z* + 1 ocurren en
z=—e"3 k=012 (633)
Por tanto,
Ri(z) = (1+2){1=2) = -z (634)

(z + 1)(z + €27/3)(z + t7i/3) (z + €27i/3) (2 4 eAmi/3)
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Como los polos son simples, el calculo se simplifica muchisimo. Empleando el método de su preferencia,
puede encontrar directamente que

Res (etle (2); —e

) 2mi/3
2mif3) lte (t _ t\/g) , (635)

T T 1x2ezmis P 3 T

7i/3
tz ) amij3y . 1—e™ V3
Res (e Rl (Z)7 —e ) = —W ex (2 —+ 1 7 (636)

De esta manera, y a pesar de que el resultado no es compacto,

)= H() |- (t—it\/§> _ 1= (2+ M)] (637)

1+ 2e27i/3 2 2 1 — 2emi/3 2

ro(t): con
1

B CE)

(638)

el procedimiento es similar, solo que ahora debemos tomar en cuenta todos los ceros de z° + 1 y la
nueva singularidad en z = 0. De nuevo, como los polos son simples, podemos hallar los residuos en

z = 782ﬁik/3, k=0, 1, 2, directamente como
Res (e Ra(z); —1) = 1t (639)
) 3 )
- 1 o) t V3
tz . 2mwi/3\ __ 2mi/3 .
Res (e Ra(z); —e ) =3¢ exp (2 — 22) , (640)
P i 1 t  tV3
Res (et Ra(2); —€° /3) =-3e /3 exp (2 + 1\2[) . (641)
EL residuo en z = 0 es bastante facil de hallar también, pues
tz 1
e¥Ra(2) = — ———r. (642)
22 1—(—2%)
Expandiendo e R (z) alrededor de z = 0 obtenemos que como
zt t t2 t3
Sttt (643)
z
3, .6_ .9
1—<—z3>:1‘z+z‘z+”" (644)
entonces el residuo es
Res (etsz(z); 0) =t. (645)
Por tanto,
1 1 ; 1 ;
ro(t) = H(t) [Set + 56727”/3 exp (; - zt\2/§) - geﬂ”/s exp (2 +i t\2[) + t] (646)

U (1 oniys 1423 t V3
= H()t+ = = S AL
(t){ + 3¢ + |:36 T YE exp (5 — i

1 —7i/3 1—€7ri/3 tf
+|: 3¢ T oeni/s | OXP +z 5 . (647)

72



El ejercicio bien podria terminar aqui. Pero, y contra toda intuicién, resulta que

Lss 14T 2 Ly 1o 2 615)
3 1 4 2e27i/3 3’ 3 1 — 2emi/3 3

u(t) = H(t) {t + %e*t - %et/Q [exp (zt\f) + exp (—lt\f)] } (649)

= H(t) {t + %eit - %etﬂ cos <t\2/§>} . (650)

Entonces,

D.1

Intentemos hallar una solucién causal al problema. Sea u(t) = H(t)y(t). Como

Ugen (t) = H(t)y'(t), (651)
1" 1 1"
ugen(t) = 56(t) + H(t)y (t)7 (652)
" 1 ! 111
Ugen(t) = 50°() + H(t)y (1), (653)
entonces la ecuacién causal es
ten (t) + BUgen (t) — tu(t) = 8(¢). (654)

Ahora, tomando la transformada de Laplace de ambos miembros, tenemos

L (tugen (1) (2) + 3L (ugen) (2) = £ (tu(t)) (2) = L£(5) (), (655)
de donde
-D [ZgU(Z):| +32°U(2) + D (U(2)) = 1; (656)
es decir,
U'(z) = 2°U'(z) = 1. (657)
De aqui que U satisface
U'(z) = ﬁ (658)

Nuestra opinién es que, en este punto, es claro que integrar no es una opcién viable (al menos durante un parcial,
por ejemplo). En vez de seguir el camino del sufrimiento, una vez més delegaremos el trabajo pesado a las
propiedades de la transformada. Hallaremos a tu(t) mediante los residuos de —e'*U’(z), y con ella obtendremos
a u(t). Sea R(z) = —U’(z). Entonces,
1
R(z) = ——. 659
() = (639)

Esta funcién racional tiene polos simples en las (tres) raices de la unidad,
z=e"M3 L=0,1, 2. (660)

Estos residuos son faciles de calcular. Ahora, es claro que conseguir a u no serd algo dificil. Lo dificil del ejercicio
es exorcizar el impulso de pensar mecanicamente. Los tres residuos de R en las raices de la unidad resultan,

L,

Res (etzR(z); 1) =3¢, (661)
tz Coomi3y L i3 t /3
Res (e R(z); e ) =—3€ exp (2 + i) (662)
; 1 o t t\/§
Ltz . Ami/3\ _ 2mi/3 .
Res (e R(z); e ) = 3€ exp (—2 - 12) . (663)
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Entonces,

_1 t | —2mi/3 R @ /3 t @
tu(t) = 3H(t) |:e +e exp ( 5~ 15 e exp 3 +1 3 , (664)
y finalmente
_ 1 t, —2mi/3 ot @ /3 t @
u(t) = 3tH(t) {e +e exp< 3~ i3 e exp | —5 +i— . (665)
A propésito, ain si llegase a integrar (658)), obtendria
1 1422 1 1 )
U(z) = —= arctan ——In(l—2)+-In(1+2+2%)+C. 666
()= ( N ) 5 In(1 = 2) + £ In ) (666)
No hace falta indicar por qué hallar a u(t) de esta expresién es innecesariamente complicado.
Encontremos una solucién causal para el P.V.I. Sea u(t) = H(t)y(t). Como
Ugen (t) = H ()Y (¢), (667)
Ugen (t) = 8(t) + H(t)y" (1), (668)
entonces u satisface
Uyen () + 2Upen (t) + 3u(t) = 6(t) + H(t)e 'sint (669)
Tomando la transformada de Laplace de ambos miembros, vemos que
L (ugm) (2) +2L (u;m) (2) +3L(uw) (2) = L) () + L (H(t)eit sin t) (2). (670)
Sea U(z) = L (u) (2). De lo anterior, obtenemos
2 1
U 22U 3U =14+ —— 671
PU(:) + 20 (2) +3U(:) =1+ g (671)

De aqui en adelante el procedimiento es estdndar a estas alturas; calcularemos los residuos de la forma més

sencilla posible. Vemos que U satisface

1 1

U(z) =
pero como z2 + 2z + 3 tiene raices en
z=—1+iV?2,
entonces, tomando k+ = —1 & iv/2 para simplificar la escritura,

1 1

z'4’+2z+3+ (22422+3)(z+1+i)(z2+1—1)’

U(z) =

Ahora, sean R1, R2, 71, y 72 tales que

1 1

GC_h)G—F) Gk )Ctltidri—d)

Ri(z) = m: Ra(z) =

con

L(r)(z) = Ri(z), L(r2)(2) = Ra(2).

(z—k)z—kp)z+1+9)(z+1—13)’

(672)

(673)

(674)

(675)

(676)

Hallaremos a 71 y r2 por separado, tal y como hemos hecho en los ejercicios anteriores. Afortunadamente, los

polos tanto en R; como R> son simples, y los residuos pueden hallarse directamente.
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= 71(t): para hallar los residuos de e'* Ry (z) basta con emplear la férmula de su preferencia. Estos resultan

Res (e Ri(2); k-) = — exp (—t — itv2), (677)

1
2iv2

Res (€% Ru(2); ki) = ﬁ exp (—t +itV2) . (678)
Por tanto,
ri(t) = H(t) ﬁ exp (—t + Zt\/i) - ﬁ exp (—t - zt\/i) . (679)

Reescribiendo un poco, obtenemos

ri(t) = %H(t)e_t sin(tv/2). (680)

= 75(z): de nuevo, como los polos son simples, el trabajo pesado es solo la carpinteria necesaria. Empleando
la férmula de su preferencia,

Res (etzRg(z); k_) = exp (ft - ztﬂ) , (681)

1
2iv2

1
Res (e Ry (2); k_) = ———exp (—t + itV/2) , 682
(¢ Ra(e); k) = 5z e ) (652)
tz . 1 .
Res (e Ry (z); —1— z) = —5; exXP (—t —it), (683)
tz . 1 .
Res (e Ra(z); —1— z) = 5; €XP (—t+7it). (684)
Por tanto,
1 —t_—it\V/2 1 —t_itV/2 1 4 4t 1 i
ro(t) = H(t) | ——=e ‘e ———e e + —e e — —e e . 685
2(t) <><Wi s ¥ ¥ (685)
Reescribiendo,

ro(t) = H(t) (—\jiet sin(tv/2) 4+ e *sin t) . (686)

Finalmente, juntando r1 y r2, u resulta
u(t) = H(t)e 'sint. (687)

D.3

Con las herramientas de la transformada de Laplace en mano, podemos hallar el propagador directamente de
una ecuacién en derivadas generalizadas: sea u una funcién causal y U su transformada de Laplace. Considere

(D* —2D* — D+ 2)u = 4. (688)
Tomando la transformada a ambos miembros, obtenemos
(2° =22 — 24+ 2)U(2) = 1. (689)

Por tanto, U satisface
(690)



Factorizar un polinomio de tercer grado no es tarea facil. Sin embargo, no es dificil observar que 1 es una raiz
de 2% — 222 — 2+ 2, de manera que

22 =2 — 24 2=(2-1)(2* —2—2), (691)
y con esto, podemos factorizar completamente como
22 =22 —242=(2-1)(z+1)(z—2). (692)

Entonces, )
z—1(z+1)(z-2)

Todos los polos de U son simples, y los residuos pueden hallarse directamente como

U(z) =

(693)

Res (etZU(z); 1) = f%et, (694)
Res (etzU(z); —1) = %eit, (695)
1
Res (etzU(z); 2) = geZt. (696)
Finalmente,
_ 1o 1 4 1 t)
u(t)—H(t)<3e +ee =5l (697)
Comencemos por tomar la transformada de Laplace de ambos miembros. Sea U(z) = L (u) (z), entonces,
tomando la transformada, obtenemos
2U(2) + kU (z) = 2, (698)
de manera que U satisface
k
z
U(z) = ——. 699
()= (699)
Ahora, bajo la condicién k < 5, pueden ocurrir una de dos cosas. La primera, que k < 3, en cuyo caso
K
z
—_ 700
P (700)
es irreducible, y la segunda, con 3 < k < 5, donde
k k-3
z k—3 kz
—_ = — . 701
23+ k i 22+ k (701)

Entonces, consideremos cada caso por separado:

= k < 3: bajo esta suposicién, hallar los residuos de e'*U(z) basta para encontrar a u. Supongamos que
B% =k, B € R. Entonces, e'*U(z) tiene polos simples en

z=—B¥3 p=0,1,2. (702)

Como los polos son simples, los residuos pueden hallarse directamente mediante alguna férmula conve-
niente y resultan

Res (etZU(z); 75) = g(fl)kﬂkf%fﬁt, (703)
tz . omi/3y 1 k 2mik/3 —mi/3 pk—2 Bt .BtV3

Res (e U(z); —Pe ) = 75(71) e e B “exp 5 i) (704)
R tz ) amif3y L k 4Amik/3 —2mi/3 qk—2 Bt . BtV3

es (e U(z); —Pe ) = g(—l) e e 8" exp 5 -‘y—ZT . (705)

76



Por tanto,

( 1) ﬂ H(t) 675t+e47'rzk/36727rz/36xp (gt‘i‘lﬂt;/g)

u(t) =
3
2Tk /3 i3 o <5t _ ZM)} (706)
2 b

2
para k < 3.
— k=1 — k=2
10— :
50T y
or y
< —sof ]
—-100T g
—150F ]
-200 —t+—"—"—"7"— !
0 2 12
t
= 3 <k < 5: en este caso, la situacién es similar, solo que ahora tenemos el término adicional z¥~3 que
corresponde a la transformada de Laplace de 8% =3 Concentrémonos entonces en
fozk—3
R(2) = ——. 707
()= 5 (707)
Como en el caso anterior, e'*R(z) tiene polos simples en z = —Be*™ /3 n = 0,1, 2. Por tanto, los
residuos pueden calcularse directamente sin mayor:
k 5 _
Res (¢"“R(z); —B) = —5(~1)" " "™, (708)
ek /3 mi)3 ok t Bt
Res (etzR(z); —,6627”/3) = g(—l)ke%m/de /385" exp (ﬂg - ’LL 2\/§> , (709)
Res (etzR(Z); _ﬁ€4m'/3) _ —g(—l)ke4ﬂk/3€72m/35k75 exp ( i W) (710)

Por ende,
_1\k gk—5 ' ‘
’LL(t) _ 5(1673)(15) + k( 1) /8 H(t) e*ﬁt + e47r1k/36727r7,/3e xp < 5 Bt\/>>

3
_2mik/3,=mi/3 o <62t — Z/Bt2\/§>} , (711)

para 3 < k < 5.
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E.1

Podemos hallar el propagador directamente de una ecuacién en derivadas generalizadas. Sea u una funcién
causal. Considere la ecuacién del propagador,

(D" + 1)u = 6. (712)

Tomando la transformada de Laplace de ambos miembros, obtenemos

2"U(z)+U(z) = 1. (713)
De aqui que U satisface,
1
= . 14
UE) = o (714)

Esta expresién es muy similar a algunas que hemos encontrado en ejercicios anteriores. De hecho, estariamos
tentados a decir que U tiene polos simples en

z=—*" k=0,1,2,...,n—1, (715)

pero esto es falso, pues si n = 2, entonces
22 = 1, (716)

cuando en realidad necesitamos que z" = —1. Sin embargo, esto puede ser resuelto facilmente tomando
z=e"/ MRk =0,1,2,...,n—1. (717)

Como todos los polos son simples, pues no hay raices repetidas, entonces el residuo en cualquiera de las
singularidades puede calcularse con generalidad. Aplicando la férmula que mejor maneje, puede obtener que

. ) 1 . . ) .
Res (6tzU(Z); eﬂ'z/n627rzk/n) _ —767”/71627”19/” exp (teﬂl/nezﬂ'lk/’ﬂ) ) (718)
n

Sin embargo, hay una mejor forma de ponerlo, pues como

i 2mwik i

n n n

(2k + 1), (719)

entonces tomando m = 2k + 1, podemos reescribir a ((718)
) 1 . .
Res (etZU(z); e’”m/") ="/ Mexp (temm/n) ,  m impar, con m < 2n — 1. (720)
n

Como éste resultado es vélido para cualquiera de las singularidades, entonces, y en virtud de (482)), concluimos

que
2n—1
1 ) .
1) = — =~ H(+ Tim/n t‘rrzm/n ) 791
) =~ Y ey (1) (21)
m impar
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